Unsupervised Sentinel-2 Image Fusion Using a Deep Unrolling Method

被引:0
|
作者
Nguyen, Han V. [1 ,2 ]
Ulfarsson, Magnus O. [1 ]
Sveinsson, Johannes R. [1 ]
Mura, Mauro Dalla [3 ,4 ]
机构
[1] Univ Iceland, Fac Elect & Comp Engn, IS-101 Reykjavik, Iceland
[2] Nha Trang Univ, Dept Elect & Elect Engn, Nha Trang 650000, Vietnam
[3] Univ Grenoble Alpes, Univ Grenoble Alpes Grenoble INP, CNRS, GIPSA Lab,Inst Engn, F-38000 Grenoble, France
[4] Inst Univ France IUF, F-75231 Paris, France
关键词
Image fusion; Sentinel-2; sharpening; superresolution; unrolling algorithm; unsupervised deep learning (DL); ALGORITHM; NETWORK;
D O I
10.1109/LGRS.2023.3326845
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Multispectral remote-sensing images often have band-dependent image resolution due to cost and technical limitations. To address this, we developed a method that sharpens low-resolution (LR) images using high-resolution (HR) images. In this letter, we propose a novel unsupervised deep-learning (DL) approach that involves unrolling an iterative algorithm into a deep neural network and training it using a loss function based on Stein's risk unbiased estimate (SURE) to sharpen the LR bands (20 and 60 m) of Sentinel-2 (S2) to their highest resolution (10 m). This approach views traditional optimization model-based methods through a DL framework, improving interpretability and clarifying connections between the two approaches. Results from both simulated and real S2 datasets demonstrate that the proposed method outperforms competitive methods and produces high-quality sharpened images for the 20- and 60-m bands. The codes are available at https://github.com/hvn2/S2-Unrolling.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [41] A CNN-BASED FUSION METHOD FOR SUPER-RESOLUTION OF SENTINEL-2 DATA
    Gargiulo, Massimiliano
    Mazza, Antonio
    Gaetano, Raffaele
    Ruello, Giuseppe
    Scarpa, Giuseppe
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4713 - 4716
  • [42] Increasing the Sentinel-2 potential for marine plastic litter monitoring through image fusion techniques
    Kremezi, Maria
    Kristollari, Viktoria
    Karathanassi, Vassilia
    Topouzelis, Konstantinos
    Kolokoussis, Pol
    Taggio, Nicolo
    Aiello, Antonello
    Ceriola, Giulio
    Barbone, Enrico
    Corradi, Paolo
    MARINE POLLUTION BULLETIN, 2022, 182
  • [43] Infrared and Visible Image Fusion Using a Deep Unsupervised Framework With Perceptual Loss
    Xu, Dongdong
    Wang, Yongcheng
    Zhang, Xin
    Zhang, Ning
    Yu, Sibo
    IEEE ACCESS, 2020, 8 : 206445 - 206458
  • [44] Assessing the Sentinel-2 Capabilities to Identify Abandoned Crops Using Deep Learning
    Portales-Julia, Enrique
    Campos-Taberner, Manuel
    Garcia-Haro, Francisco Javier
    Gilabert, Maria Amparo
    AGRONOMY-BASEL, 2021, 11 (04):
  • [45] SENTINEL-1 AND SENTINEL-2 DATA FUSION FOR URBAN CHANGE DETECTION
    Benedetti, Alessia
    Picchiani, Matteo
    Del Frate, Fabio
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1962 - 1965
  • [46] Sentinel-2 Image Dehazing using Correlation between Visible and Infrared Bands
    Khetkeeree, Suphongsa
    Petchthaweetham, Bannakorn
    Liangrocapart, Sompong
    Srisuk, Sanun
    2020 8TH INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON), 2020,
  • [47] Forest mapping and monitoring in Africa using Sentinel-2 data and deep learning
    Waldeland, Anders U.
    Trier, oivind Due
    Salberg, Arnt-Borre
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 111
  • [48] FOREST SEMANTIC SEGMENTATION BASED ON DEEP LEARNING USING SENTINEL-2 IMAGES
    Hizal, C.
    Gulsu, G.
    Akgun, H. Y.
    Kulavuz, B.
    Bakirman, T.
    Aydin, A.
    Bayram, B.
    8TH INTERNATIONAL CONFERENCE ON GEOINFORMATION ADVANCES, GEOADVANCES 2024, VOL. 48-4, 2024, : 229 - 236
  • [49] PFNet: an unsupervised deep network for polarization image fusion
    Zhang, Junchao
    Shao, Jianbo
    Chen, Jianlai
    Yang, Degui
    Liang, Buge
    Liang, Rongguang
    OPTICS LETTERS, 2020, 45 (06) : 1507 - 1510
  • [50] Deep Forest classifier for wetland mapping using the combination of Sentinel-1 and Sentinel-2 data
    Jamali, Ali
    Mahdianpari, Masoud
    Brisco, Brian
    Granger, Jean
    Mohammadimanesh, Fariba
    Salehi, Bahram
    GISCIENCE & REMOTE SENSING, 2021, 58 (07) : 1072 - 1089