Unsupervised Sentinel-2 Image Fusion Using a Deep Unrolling Method

被引:0
|
作者
Nguyen, Han V. [1 ,2 ]
Ulfarsson, Magnus O. [1 ]
Sveinsson, Johannes R. [1 ]
Mura, Mauro Dalla [3 ,4 ]
机构
[1] Univ Iceland, Fac Elect & Comp Engn, IS-101 Reykjavik, Iceland
[2] Nha Trang Univ, Dept Elect & Elect Engn, Nha Trang 650000, Vietnam
[3] Univ Grenoble Alpes, Univ Grenoble Alpes Grenoble INP, CNRS, GIPSA Lab,Inst Engn, F-38000 Grenoble, France
[4] Inst Univ France IUF, F-75231 Paris, France
关键词
Image fusion; Sentinel-2; sharpening; superresolution; unrolling algorithm; unsupervised deep learning (DL); ALGORITHM; NETWORK;
D O I
10.1109/LGRS.2023.3326845
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Multispectral remote-sensing images often have band-dependent image resolution due to cost and technical limitations. To address this, we developed a method that sharpens low-resolution (LR) images using high-resolution (HR) images. In this letter, we propose a novel unsupervised deep-learning (DL) approach that involves unrolling an iterative algorithm into a deep neural network and training it using a loss function based on Stein's risk unbiased estimate (SURE) to sharpen the LR bands (20 and 60 m) of Sentinel-2 (S2) to their highest resolution (10 m). This approach views traditional optimization model-based methods through a DL framework, improving interpretability and clarifying connections between the two approaches. Results from both simulated and real S2 datasets demonstrate that the proposed method outperforms competitive methods and produces high-quality sharpened images for the 20- and 60-m bands. The codes are available at https://github.com/hvn2/S2-Unrolling.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [21] Reconstruction of Cloud-free Sentinel-2 Image Time-series Using an Extended Spatiotemporal Image Fusion Approach
    Zhou, Fuqun
    Zhong, Detang
    Peiman, Rihana
    REMOTE SENSING, 2020, 12 (16)
  • [22] New tool for spatiotemporal image fusion in remote sensing - a case study approach using Sentinel-2 and Sentinel-3 data
    Mileva, Nikolina
    Mecklenburg, Susanne
    Gascon, Ferran
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXIV, 2018, 10789
  • [23] Earth Observation Multi-Spectral Image Fusion with Transformers for Sentinel-2 and Sentinel-3 Using Synthetic Training Data
    Cristille, Pierre-Laurent
    Bernhard, Emmanuel
    Cox, Nick L. J.
    Bernard-Salas, Jeronimo
    Mangin, Antoine
    REMOTE SENSING, 2024, 16 (16)
  • [24] MULTI-IMAGE FUSION FOR SUPER-RESOLVING INDIVIDUAL SENTINEL-2 IMAGES
    Pogodzinski, Bartlomiej
    Tarasiewicz, Tomasz
    Kawulok, Michal
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 1108 - 1112
  • [25] DEEP SEMANTIC FUSION OF SENTINEL-1 AND SENTINEL-2 SNOW PRODUCTS FOR SNOW MONITORING IN MOUNTAINOUS REGIONS
    Thu Trang Le
    Atto, Abdourrahmane
    Trouve, Emmanuel
    Karbou, Fatima
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6286 - 6289
  • [26] Fusion of Sentinel-1 and Sentinel-2 image time series for permanent and temporary surface water mapping
    Bioresita, Filsa
    Puissant, Anne
    Stumpf, Andre
    Malet, Jean-Philippe
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (23) : 9026 - 9049
  • [27] An adaptive image fusion method for Sentinel-2 images and high-resolution images with long-time intervals
    Dong, Runmin
    Zhang, Lixian
    Li, Weijia
    Yuan, Shuai
    Gan, Lin
    Zheng, Juepeng
    Fu, Haohuan
    Mou, Lichao
    Zhu, Xiao Xiang
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 121
  • [28] A Deep Learning Approach for Calamity Assessment Using Sentinel-2 Data
    Scharvogel, Daniel
    Brandmeier, Melanie
    Weis, Manuel
    FORESTS, 2020, 11 (12): : 1 - 21
  • [29] Sentinel-2 Sharpening Using a Reduced-Rank Method
    Ulfarsson, Magnus O.
    Palsson, Frosti
    Dalla Mura, Mauro
    Sveinsson, Johannes R.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09): : 6408 - 6420
  • [30] AN UNSUPERVISED HYPERSPECTRAL IMAGE FUSION METHOD BASED ON SPECTRAL UNMIXING AND DEEP LEARNING
    Zheng, Kexin
    Khader, Abdolraheem
    Xiao, Liang
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2398 - 2401