On effective ε-integrality in orbits of rational maps over function fields and multiplicative dependence

被引:0
|
作者
Mello, Jorge [1 ]
机构
[1] Oakland Univ, Dept Math & Stat, Rochester, MI 48309 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Integral points on orbits; Arithmetic dynamics; Quantitative estimates; ROTHS THEOREM; POINTS; PRINCIPLE;
D O I
10.1007/s40879-023-00709-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove effective bounds for the set of quasi-integral points in orbits of rational maps over function fields under some conditions, generalizing previous work of Hsia and Silverman (Pacific J Math 249(2), 321-342, 2011) for orbits over function fields of characteristic zero. We then use this to prove height bounds for algebraic functions whose orbit under a rational function has multiplicative dependent elements modulo groups of S-units, generalizing recent results over number fields.
引用
收藏
页数:21
相关论文
共 12 条