ON SHIMODA?S THEOREM

被引:0
作者
Atamuratov, A. A. [1 ]
Rasulov, K. K. [1 ]
机构
[1] Urgench State Univ, Dept Math Anal, ul Khamida Alimdjana 14, Urgench 220100, Uzbekistan
来源
VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI | 2023年 / 33卷 / 01期
关键词
Hartogs's phenomena; Shimoda's Theorem; separately holomorphic functions; power series; HOLOMORPHIC-FUNCTIONS; EXTENSION;
D O I
10.35634/vm230102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present work is devoted to Shimoda's Theorem on the holomorphicity of a function f(z, w) which is holomorphic by w is an element of V for each fixed z is an element of U and is holomorphic by z is an element of U for each fixed w is an element of E, where E subset of V is a countable set with at least one limit point in V. Shimoda proves that in this case f(z, w) is holomorphic in U xV except for a nowhere dense closed subset of U xV. We prove the converse of this result, that is for an arbitrary given nowhere dense closed subset of U, S subset of U, there exists a holomorphic function, satisfying Shimoda's Theorem on U xV subset of C-2, that is not holomorphic on S xV. Moreover, we observe conditions which imply empty exception sets on Shimoda's Theorem and prove generalizations of Shimoda's Theorem.
引用
收藏
页码:17 / 31
页数:15
相关论文
共 29 条
[1]  
Al Boggess, 2022, ANN I FOURIER, V72, P1185
[2]  
Bang PH, 2008, B MATH SOC SCI MATH, V51, P103
[3]  
Baracco L, 2013, AM J MATH, V135, P493
[4]   Global variants of Hartogs' theorem [J].
Bochnak, Jacek ;
Kucharz, Wojciech .
ARCHIV DER MATHEMATIK, 2019, 113 (03) :281-290
[5]  
Boman J, 2017, TRENDS MATH, P135
[6]  
Cho YWL, 2021, J GEOM ANAL, V31, P10634, DOI 10.1007/s12220-021-00660-x
[7]  
Gamelin T., 1973, Ravnomernyye algebry
[8]  
Goluzin G. M., 1966, GEOMETRIC THEORY FUN
[9]   ON ANALYTIC CONTINUATION FROM THE EDGE OF THE WEDGE [J].
GONCHAR, AA .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1985, 10 (01) :221-225
[10]  
Hukuhara M, 1930, Kansu-hoteisiki ogobi Oyo-Kaiseki, V48, P48