Yolk-Shell Gradient-Structured SiOx Anodes Derived from Periodic Mesoporous Organosilicas Enable High-Performance Lithium-Ion Batteries

被引:21
作者
Ouyang, Quan [1 ]
Li, Guangshe [1 ]
Zhang, Xin [1 ]
Zhao, Xu [1 ]
Fu, Shilong [1 ]
Li, Liping [1 ]
机构
[1] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
gradient structure; lithium-ion batteries; SiOx anodes; yolk-shell; HIGH-CAPACITY; SILICON; NANOPARTICLES; STABILITY;
D O I
10.1002/smll.202305793
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Gradient-structured materials hold great promise in the areas of batteries and electrocatalysis. Here, yolk-shell gradient-structured SiOx-based anode (YSG-SiOx/C@C) derived from periodic mesoporous organosilica spheres (PMOs) through a selective etching method is reported. Capitalizing on the poor hydrothermal stability of inorganic silica in organic-inorganic hybrid silica spheres, the inorganic silica component in the hybrid spheres is selectively etched to obtain yolk-shell-structured PMOs. Subsequently, the yolk-shell PMOs are coated with carbon to fabricate YSG-SiOx/C@C. YSG-SiOx/C@C is comprised of a core with uniform distribution of SiOx and carbon at the atomic scale, a middle void layer, and outer layers of SiOx and amorphous carbon. This unique gradient structure and composition from inside to outside not only enhances the electrical conductivity of the SiOx anode and reduces the side reactions, but also reserves void space for the expansion of SiOx, thereby effectively mitigating the stress caused by volumetric effect. As a result, YSG-SiOx/C@C exhibits exceptional cycling stability and rate capability. Specifically, YSG-SiOx/C@C maintains a specific capacity of 627 mAh g(-1) after 400 cycles at 0.5 A g(-1), and remains stable even after 550 cycles at current density of 2 A g(-1), achieving a specific capacity of 519 mAh g(-1).
引用
收藏
页数:12
相关论文
共 49 条
[1]   Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes [J].
An, Weili ;
Gao, Biao ;
Mei, Shixiong ;
Xiang, Ben ;
Fu, Jijiang ;
Wang, Lei ;
Zhang, Qiaobao ;
Chu, Paul K. ;
Huo, Kaifu .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]   Tailoring a multifunctional, boron and fluoride-enriched solid-electrolyte interphase precursor towards high-rate and stable-cycling silicon anodes [J].
Cao, Zhang ;
Zheng, Xueying ;
Wang, Yan ;
Huang, Weibo ;
Li, Yuchen ;
Huang, Yunhui ;
Zheng, Honghe .
NANO ENERGY, 2022, 93
[3]   Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries [J].
Chen, Ji ;
Fan, Xiulin ;
Li, Qin ;
Yang, Hongbin ;
Khoshi, M. Reza ;
Xu, Yaobin ;
Hwang, Sooyeon ;
Chen, Long ;
Ji, Xiao ;
Yang, Chongyin ;
He, Huixin ;
Wang, Chongmin ;
Garfunkel, Eric ;
Su, Dong ;
Borodin, Oleg ;
Wang, Chunsheng .
NATURE ENERGY, 2020, 5 (05) :386-397
[4]   Synthesis of SiOx/C Composite Nanosheets As High-Rate and Stable Anode Materials for Lithium-Ion Batteries [J].
Chen, Luyi ;
Zheng, Juan ;
Lin, Siyu ;
Khan, Shaukat ;
Huang, Junlong ;
Liu, Shaohong ;
Chen, Zirun ;
Wu, Dingcai ;
Fu, Ruowen .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (04) :3562-3568
[5]   Colloidal HPMO Nanoparticles: Silica-Etching Chemistry Tailoring, Topological Transformation, and Nano-Biomedical Applications [J].
Chen, Yu ;
Xu, Pengfei ;
Chen, Hangrong ;
Li, Yongsheng ;
Bu, Wenbo ;
Shu, Zhu ;
Li, Yaping ;
Zhang, Jiamin ;
Zhang, Lingxia ;
Pan, Limin ;
Cui, Xiangzhi ;
Hua, Zile ;
Wang, Jin ;
Zhang, Linlin ;
Shi, Jianlin .
ADVANCED MATERIALS, 2013, 25 (22) :3100-3105
[6]   Dendrimer Based Binders Enable Stable Operation of Silicon Microparticle Anodes in Lithium-Ion Batteries [J].
Dong, Yanling ;
Zhang, Biao ;
Zhao, Fugui ;
Gao, Feng ;
Liu, Dong .
SMALL, 2023, 19 (24)
[7]   Raspberry-like Nanostructured Silicon Composite Anode for High-Performance Lithium-Ion Batteries [J].
Fang, Shan ;
Tong, Zhenkun ;
Nie, Ping ;
Liu, Gao ;
Zhang, Xiaogang .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (22) :18766-18773
[8]   Enveloping SiOx in N-doped carbon for durable lithium storage via an eco-friendly solvent-free approach [J].
Hu, Guangwu ;
Zhong, Kunzhe ;
Yu, Ruohan ;
Liu, Zhenhui ;
Zhang, Yuanyuan ;
Wu, Jinsong ;
Zhou, Liang ;
Mai, Liqiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (26) :13285-13291
[9]   Unraveling the Reaction Mechanisms of SiO Anodes for Li-Ion Batteries by Combining in Situ 7Li and ex Situ 7Li/29Si Solid-State NMR Spectroscopy [J].
Kitada, Keitaro ;
Pecher, Oliver ;
Magusin, Pieter C. M. M. ;
Groh, Matthias F. ;
Weatherup, Robert S. ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (17) :7014-7027
[10]   Engineering High-Performance SiOx Anode Materials with a Titanium Oxynitride Coating for Lithium-Ion Batteries [J].
Lai, Guoyong ;
Wei, Xiujuan ;
Zhou, Binbin ;
Huang, Xiuhuan ;
Tang, Weiting ;
Wu, Shuxing ;
Lin, Zhan .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (44) :49830-49838