Dynamic Pricing for Client Recruitment in Federated Learning

被引:2
作者
Wang, Xuehe [1 ,2 ]
Zheng, Shensheng [1 ]
Duan, Lingjie [3 ]
机构
[1] Sun Yat Sen Univ, Sch Artificial Intelligence, Zhuhai 519082, Peoples R China
[2] Guangdong Key Lab Big Data Anal & Proc, Guangzhou 510006, Peoples R China
[3] Singapore Univ Technol & Design, Pillar Engn Syst & Design, Singapore 487372, Singapore
基金
中国国家自然科学基金;
关键词
Federated learning; dynamic pricing; incentive mechanism; incomplete information; MECHANISM; NETWORKS;
D O I
10.1109/TNET.2023.3312208
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Though federated learning (FL) well preserves clients' data privacy, many clients are still reluctant to join FL given the communication cost and energy consumption in their mobile devices. It is important to design pricing compensations to motivate enough clients to join FL and distributively train the global model. Prior pricing mechanisms for FL are static and cannot adapt to clients' random arrival pattern over time. We propose a new dynamic pricing solution in closed-form by constructing the Hamiltonian function to optimally balance the client recruitment time and the model training time, without knowing clients' actual arrivals or training costs. During the client recruitment phase, we offer time-dependent monetary rewards per client arrival to trade off between the total payment and the FL model's accuracy loss. Such reward gradually increases when we approach to the recruitment deadline or have greater data aging, and we also extend the deadline if the clients' training time per iteration becomes shorter. Further, we extend to consider heterogeneous client types in training data size and training time per iteration. We successfully extend our dynamic pricing solution and develop an optimal algorithm of linear complexity to monotonically select client types for FL. Finally, we also show robustness of our solution against estimation error of clients' data sizes, and run numerical experiments to validate our results.
引用
收藏
页码:1273 / 1286
页数:14
相关论文
共 50 条
  • [21] Optimal Mechanism Design for Heterogeneous Client Sampling in Federated Learning
    Liao, Guocheng
    Luo, Bing
    Feng, Yutong
    Zhang, Meng
    Chen, Xu
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (11) : 10598 - 10609
  • [22] Improving Federated Learning through Abnormal Client Detection and Incentive
    Guo, Hongle
    Mao, Yingchi
    He, Xiaoming
    Zhang, Benteng
    Pang, Tianfu
    Ping, Ping
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 139 (01): : 383 - 403
  • [23] Auction-based client selection for online Federated Learning
    Guo, Juncai
    Su, Lina
    Liu, Jin
    Ding, Jianli
    Liu, Xiao
    Huang, Bo
    Li, Li
    INFORMATION FUSION, 2024, 112
  • [24] On-Demand-FL: A Dynamic and Efficient Multicriteria Federated Learning Client Deployment Scheme
    Chahoud, Mario
    Sami, Hani
    Mourad, Azzam
    Otoum, Safa
    Otrok, Hadi
    Bentahar, Jamal
    Guizani, Mohsen
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (18) : 15822 - 15834
  • [25] Adaptive client and communication optimizations in Federated Learning
    Wu, Jiagao
    Wang, Yu
    Shen, Zhangchi
    Liu, Linfeng
    INFORMATION SYSTEMS, 2023, 116
  • [26] Online Client Scheduling for Fast Federated Learning
    Xu, Bo
    Xia, Wenchao
    Zhang, Jun
    Quek, Tony Q. S.
    Zhu, Hongbo
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (07) : 1434 - 1438
  • [27] Towards Client Selection in Satellite Federated Learning
    Wu, Changhao
    He, Siyang
    Yin, Zengshan
    Guo, Chongbin
    APPLIED SCIENCES-BASEL, 2024, 14 (03):
  • [28] Local Performance Trade-Off in Heterogeneous Federated Learning with Dynamic Client Grouping
    Mao, Yingchi
    Wu, Jun
    Cheng, Yangkun
    Ping, Ping
    Wu, Jie
    2022 IEEE 19TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SMART SYSTEMS (MASS 2022), 2022, : 1 - 9
  • [29] iSample: Intelligent Client Sampling in Federated Learning
    Imani, HamidReza
    Anderson, Jeff
    El-Ghazawi, Tarek
    6TH IEEE INTERNATIONAL CONFERENCE ON FOG AND EDGE COMPUTING (ICFEC 2022), 2022, : 58 - 65
  • [30] Active Client Selection for Clustered Federated Learning
    Huang, Honglan
    Shi, Wei
    Feng, Yanghe
    Niu, Chaoyue
    Cheng, Guangquan
    Huang, Jincai
    Liu, Zhong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16424 - 16438