Cumulative α-Jensen-Shannon measure of divergence: Properties and applications

被引:0
作者
Riyahi, H. [1 ]
Baratnia, M. [1 ]
Doostparast, M. [1 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Stat, POB 91775-1159, Mashhad, Iran
关键词
Distribution function; Entropy; Kullback-Leibler divergence; proportional reversed hazard rate model; EXPONENTIAL-DISTRIBUTION;
D O I
10.1080/03610926.2023.2238861
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of quantifying the distance between distributions arises in various fields, including cryptography, information theory, communication networks, machine learning, and data mining. In this article, the analogy with the cumulative Jensen-Shannon divergence, defined in Nguyen and Vreeken (2015), we propose a new divergence measure based on the cumulative distribution function and call it the cumulative a-Jensen-Shannon divergence, denoted by CJS((a)). Properties of CJS((a) )are studied in detail, and also two upper bounds for CJS((a)) are obtained. The simplified results under the proportional reversed hazard rate model are given. Various illustrative examples are analyzed.
引用
收藏
页码:5989 / 6011
页数:23
相关论文
共 38 条
  • [1] Amari S., 1987, Differential Geometry in Statistical Inference
  • [2] [Anonymous], 1948, Bell Syst. Tech. J., DOI DOI 10.1002/J.1538-7305.1948.TB01338.X
  • [3] Testing Goodness-of-Fit for Exponential Distribution Based on Cumulative Residual Entropy
    Baratpour, S.
    Rad, A. Habibi
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (08) : 1387 - 1396
  • [4] Multivariate Discretization for Set Mining
    Stephen D. Bay
    [J]. Knowledge and Information Systems, 2001, 3 (4) : 491 - 512
  • [5] Properties of classical and quantum Jensen-Shannon divergence
    Briet, Jop
    Harremoes, Peter
    [J]. PHYSICAL REVIEW A, 2009, 79 (05):
  • [6] Cover T., 1991, ELEMENTS INFORM THEO
  • [7] Csiszar I., 2004, Foundations and Trends in Communications and Information Theory, V1, P1, DOI 10.1561/0100000004
  • [8] On cumulative entropies
    Di Crescenzo, Antonio
    Longobardi, Maria
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (12) : 4072 - 4087
  • [9] Generalized Cumulative Residual Entropy for Distributions with Unrestricted Supports
    Drissi, Noomane
    Chonavel, Thierry
    Boucher, Jean Marc
    [J]. JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2008, 2008
  • [10] Duivesteijn W., 2010, Proceedings 2010 10th IEEE International Conference on Data Mining (ICDM 2010), P158, DOI 10.1109/ICDM.2010.53