Within-Modality Synthesis and Novel Radiomic Evaluation of Brain MRI Scans

被引:32
|
作者
Rezaeijo, Seyed Masoud [1 ]
Chegeni, Nahid [1 ]
Naeini, Fariborz Baghaei [2 ]
Makris, Dimitrios [2 ]
Bakas, Spyridon [2 ,3 ]
机构
[1] Ahvaz Jundishapur Univ Med Sci, Fac Med, Dept Med Phys, Ahvaz, Iran
[2] Kingston Univ, Fac Engn Comp & Environm, Penrhyn Rd Campus, London KT1 2EE, England
[3] Univ Penn, Ctr Biomed Image Comp & Analyt CB, Richards Med Res Labs, Floor 7,3700 Hamilton Walk, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
MRI synthesis; T2W; FLAIR; radiomic; CycleGAN; DC(2)Anet; IMAGES; CT; GLIOBLASTOMA; INFORMATION;
D O I
10.3390/cancers15143565
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary Brain MRI scans often require different imaging sequences based on tissue types, posing a common challenge. In our research, we propose a method that utilizes Generative Adversarial Networks (GAN) to translate T2-weighted-Fluid-attenuated-Inversion-Recovery (FLAIR) MRI volumes into T2-Weighted (T2W) volumes, and vice versa. To evaluate the effectiveness of our approach, we introduce a novel evaluation schema that incorporates radiomic features. We train two distinct GAN-based architectures, namely Cycle GAN and Dual Cycle-Consistent Adversarial network (DC2Anet), using 510 pair-slices from 102 patients. Our findings indicate that the generative methods can produce results similar to the original sequence without significant changes in radiometric features. This method has the potential to assist clinicians in making informed decisions based on generated images when alternative sequences are unavailable, or time constraints prevent re-scanning MRI patients. One of the most common challenges in brain MRI scans is to perform different MRI sequences depending on the type and properties of tissues. In this paper, we propose a generative method to translate T2-Weighted (T2W) Magnetic Resonance Imaging (MRI) volume from T2-weight-Fluid-attenuated-Inversion-Recovery (FLAIR) and vice versa using Generative Adversarial Networks (GAN). To evaluate the proposed method, we propose a novel evaluation schema for generative and synthetic approaches based on radiomic features. For the evaluation purpose, we consider 510 pair-slices from 102 patients to train two different GAN-based architectures Cycle GAN and Dual Cycle-Consistent Adversarial network (DC(2)Anet). The results indicate that generative methods can produce similar results to the original sequence without significant change in the radiometric feature. Therefore, such a method can assist clinics to make decisions based on the generated image when different sequences are not available or there is not enough time to re-perform the MRI scans.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Axial Attention Convolutional Neural Network for Brain Tumor Segmentation with Multi-Modality MRI Scans
    Tian, Weiwei
    Li, Dengwang
    Lv, Mengyu
    Huang, Pu
    BRAIN SCIENCES, 2023, 13 (01)
  • [2] An evaluation of MRI lumbar spine scans within a community-based diagnostic setting
    Hudson, Darren
    Knapp, Karen
    Benwell, Martin
    MUSCULOSKELETAL CARE, 2021, 19 (03) : 384 - 395
  • [3] Multi-Modal Modality-Masked Diffusion Network for Brain MRI Synthesis With Random Modality Missing
    Meng, Xiangxi
    Sun, Kaicong
    Xu, Jun
    He, Xuming
    Shen, Dinggang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (07) : 2587 - 2598
  • [4] Brain extraction on MRI scans in presence of diffuse glioma: Multi-institutional performance evaluation of deep learning methods and robust modality-agnostic training
    Thakur, Siddhesh
    Doshi, Jimit
    Pati, Sarthak
    Rathore, Saima
    Sako, Chiharu
    Bilello, Michel
    Ha, Sung Min
    Shukla, Gaurav
    Flanders, Adam
    Kotrotsou, Aikaterini
    Milchenko, Mikhail
    Liem, Spencer
    Alexander, Gregory S.
    Lombardo, Joseph
    Palmer, Joshua D.
    LaMontagne, Pamela
    Nazeri, Arash
    Talbar, Sanjay
    Kulkarni, Uday
    Marcus, Daniel
    Colen, Rivka
    Davatzikos, Christos
    Erus, Guray
    Bakas, Spyridon
    NEUROIMAGE, 2020, 220
  • [5] Brain Tumor Classification from MRI Scans Using a Novel CNN Architecture and Optimization Techniques
    Hussain, Shaik Jaffar
    Devi, B. Rupa
    Mahalakshmi, V.
    Harikala
    Parveen, S. Z.
    Athinarayanan, S.
    ARTIFICIAL INTELLIGENCE AND KNOWLEDGE PROCESSING, AIKP 2024, 2025, 2228 : 117 - 131
  • [6] Development of a Novel Multiparametric MRI Radiomic Nomogram for Preoperative Evaluation of Early Recurrence in Resectable Pancreatic Cancer
    Tang, Tian-Yu
    Li, Xiang
    Zhang, Qi
    Guo, Cheng-Xiang
    Zhang, Xiao-Zhen
    Lao, Meng-Yi
    Shen, Yi-Nan
    Xiao, Wen-Bo
    Ying, Shi-Hong
    Sun, Ke
    Yu, Ri-Sheng
    Gao, Shun-Liang
    Que, Ri-Sheng
    Chen, Wei
    Huang, Da-Bing
    Pang, Pei-Pei
    Bai, Xue-Li
    Liang, Ting-Bo
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 52 (01) : 231 - 245
  • [7] Automated Lesion Segmentation and Image Synthesis of MS Brain MRI Scans Using Deep Learning
    Singh, Manpreet
    Jaberzadeh, Amirhossein
    Pelletier, Daniel
    NEUROLOGY, 2020, 94 (15)
  • [8] Test characteristics of quick brain MRI for shunt evaluation in children: an alternative modality to avoid radiation
    Yue, Esther L.
    Meckler, Garth D.
    Fleischman, Ross J.
    Selden, Nathan R.
    Bardo, Dianna M. E.
    O'Connor, Amity K. Chu
    Vu, Eugene T.
    Fu, Rongwei
    Spiro, David M.
    JOURNAL OF NEUROSURGERY-PEDIATRICS, 2015, 15 (04) : 420 - 426
  • [10] MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans
    Mendrik, Adrienne M.
    Vincken, Koen L.
    Kuijf, Hugo J.
    Breeuwer, Marcel
    Bouvy, Willem H.
    de Bresser, Jeroen
    Alansary, Amir
    de Bruijne, Marleen
    Carass, Aaron
    El-Baz, Ayman
    Jog, Amod
    Katyal, Ranveer
    Khan, Ali R.
    van der Lijn, Fedde
    Mahmood, Qaiser
    Mukherjee, Ryan
    van Opbroek, Annegreet
    Paneri, Sahil
    Pereira, Sergio
    Persson, Mikael
    Rajchl, Martin
    Sarikaya, Duygu
    Smedby, Orjan
    Silva, Carlos A.
    Vrooman, Henri A.
    Vyas, Saurabh
    Wang, Chunliang
    Zhao, Liang
    Biessels, Geert Jan
    Viergever, Max A.
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2015, 2015