Reaction mechanism study and modeling of thermal runaway inside a high nickel-based lithium-ion battery through component combination analysis

被引:21
作者
Kim, Minuk [1 ]
Jeon, Jaeyoung [1 ]
Hong, Jongsup [1 ]
机构
[1] Yonsei Univ, Sch Mech Engn, 50 Yonsei Ro, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
Lithium-ion battery; Thermal runaway; High nickel-based cathode; Reaction mechanism; Reaction modeling; ACCELERATING RATE CALORIMETRY; CATHODE MATERIALS; INTERCALATED GRAPHITE; LITHIATED GRAPHITE; STRUCTURAL-CHANGES; ELECTROLYTE; STABILITY; DECOMPOSITION; ANODE; OXIDE;
D O I
10.1016/j.cej.2023.144434
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To diagnose and elucidate thermal runaway accompanying gas evolution of a lithium-ion battery, it is essential to understand the thermal side reactions that lead to thermal runaway inside a lithium-ion battery. It is very useful to make a reliable model that represents these reactions to analyze thermal runaway processes in order to secure battery safety and overcome high costs of large-scale experiments. This study proposes the reaction mechanism and the reaction model through the design of experiments with the combination of battery components such as a cathode, an anode, an electrolyte, and a separator. To develop the reaction mechanism, the peak temperature and calorific value of each reaction are obtained by using a differential scanning calorimeter. The change of mass and produced gas from each reaction are identified by using an online thermogravimetry-mass spectrometer. Based on these measurements, the reaction model is developed by estimating kinetic parameters obtained from the Kissinger analysis. The reaction model exhibits root-mean-square-error of 1.91 mW, 21.79 mW, and 4.53 mW in the electrolyte, the cathode and the anode, respectively, as compared to differential scanning calorimeter results, confirming its high fidelity. The proposed model illustrates the variation of volume fractions of each phase inside a lithium-ion battery to simulate electrochemical performance degradation during thermal runaway stage. The change in internal pressure is also evaluated by using the change in mass and volume of each phase. Based on the mechanism and model derived from this study, it is possible to pinpoint the electrochemical per-formance degradation and heat generation characteristics during thermal runaway.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Experimental Study on Effects of Triggering Modes on Thermal Runaway Characteristics of Lithium-Ion Battery
    Dong, Yuanjin
    Meng, Jian
    Sun, Xiaomei
    Zhao, Peidong
    Sun, Peng
    Zheng, Bin
    WORLD ELECTRIC VEHICLE JOURNAL, 2023, 14 (10):
  • [32] Study on the suppression of thermal runaway of lithium-ion battery by water mist with different additives
    Li, Lixia
    Chen, Zhen
    Lu, Yuan
    Zang, Pengju
    Zhan, Wang
    Cheng, Yuhe
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (04) : 11349 - 11362
  • [33] Novelty method based on thermal trigger mechanism for high energy density lithium-ion battery safety
    Ji, Weijie
    Li, Hang
    Li, Wei
    He, Zheng
    Zhao, Jinbao
    JOURNAL OF ENERGY STORAGE, 2023, 64
  • [34] Study on the thermal runaway behavior and mechanism of 18650 lithium-ion battery induced by external short circuit
    Zeng, Zhixin
    An, Xian
    Peng, Changbo
    Ruan, Xianzhen
    Song, Zhiping
    Dang, Chao
    An, Zhoujian
    APPLIED THERMAL ENGINEERING, 2025, 258
  • [35] Numerical Study on Lithium-Ion Battery Thermal Runaway Under Fire Conditions
    Cheng, Chonglv
    Kong, Fanfu
    Shan, Conghui
    Xu, Baopeng
    FIRE TECHNOLOGY, 2023, 59 (03) : 1073 - 1087
  • [36] Numerical Study on Lithium-Ion Battery Thermal Runaway Under Fire Conditions
    Chonglv Cheng
    Fanfu Kong
    Conghui Shan
    Baopeng Xu
    Fire Technology, 2023, 59 : 1073 - 1087
  • [37] A lattice Boltzmann modeling and analysis of the thermal convection in a lithium-ion battery
    Jiang, Jibing
    Li, Dinggen
    Dou, Ruzhen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (10) : 2695 - 2706
  • [38] In-situ Analysis of Thermal Runaway Gas in Ternary Lithium-ion Battery
    Zhang Q.
    Qu Y.
    Hao C.
    Liu T.
    Chen D.
    Gaodianya Jishu/High Voltage Engineering, 2022, 48 (07): : 2817 - 2825
  • [39] Effect of low temperature on thermal runaway and fire behaviors of 18650 lithium-ion battery: A comprehensive experimental study
    Kong, Depeng
    Zhao, Hengle
    Ping, Ping
    Zhang, Yue
    Wang, Gongquan
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 174 : 448 - 459
  • [40] Thermal Runaway Analysis of NCM Lithium-Ion Battery in Humid and Hot Environment
    Zhang P.-H.
    Yuan W.
    Wei Z.-Y.
    Li Z.-J.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2020, 41 (06): : 881 - 887