Reaction mechanism study and modeling of thermal runaway inside a high nickel-based lithium-ion battery through component combination analysis

被引:21
作者
Kim, Minuk [1 ]
Jeon, Jaeyoung [1 ]
Hong, Jongsup [1 ]
机构
[1] Yonsei Univ, Sch Mech Engn, 50 Yonsei Ro, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
Lithium-ion battery; Thermal runaway; High nickel-based cathode; Reaction mechanism; Reaction modeling; ACCELERATING RATE CALORIMETRY; CATHODE MATERIALS; INTERCALATED GRAPHITE; LITHIATED GRAPHITE; STRUCTURAL-CHANGES; ELECTROLYTE; STABILITY; DECOMPOSITION; ANODE; OXIDE;
D O I
10.1016/j.cej.2023.144434
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To diagnose and elucidate thermal runaway accompanying gas evolution of a lithium-ion battery, it is essential to understand the thermal side reactions that lead to thermal runaway inside a lithium-ion battery. It is very useful to make a reliable model that represents these reactions to analyze thermal runaway processes in order to secure battery safety and overcome high costs of large-scale experiments. This study proposes the reaction mechanism and the reaction model through the design of experiments with the combination of battery components such as a cathode, an anode, an electrolyte, and a separator. To develop the reaction mechanism, the peak temperature and calorific value of each reaction are obtained by using a differential scanning calorimeter. The change of mass and produced gas from each reaction are identified by using an online thermogravimetry-mass spectrometer. Based on these measurements, the reaction model is developed by estimating kinetic parameters obtained from the Kissinger analysis. The reaction model exhibits root-mean-square-error of 1.91 mW, 21.79 mW, and 4.53 mW in the electrolyte, the cathode and the anode, respectively, as compared to differential scanning calorimeter results, confirming its high fidelity. The proposed model illustrates the variation of volume fractions of each phase inside a lithium-ion battery to simulate electrochemical performance degradation during thermal runaway stage. The change in internal pressure is also evaluated by using the change in mass and volume of each phase. Based on the mechanism and model derived from this study, it is possible to pinpoint the electrochemical per-formance degradation and heat generation characteristics during thermal runaway.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials
    Li, Yan
    Liu, Xiang
    Wang, Li
    Feng, Xuning
    Ren, Dongsheng
    Wu, Yu
    Xu, Guiliang
    Lu, Languang
    Hou, Junxian
    Zhang, Weifeng
    Wang, Yongling
    Xu, Wenqian
    Ren, Yang
    Wang, Zaifa
    Huang, Jianyu
    Meng, Xiangfeng
    Han, Xuebing
    Wang, Hewu
    He, Xiangming
    Chen, Zonghai
    Amine, Khalil
    Ouyang, Minggao
    NANO ENERGY, 2021, 85 (85)
  • [22] Thermal runaway modeling of large format high-nickel/silicon-graphite lithium-ion batteries based on reaction sequence and kinetics
    Wang, Yu
    Ren, Dongsheng
    Feng, Xuning
    Wang, Li
    Ouyang, Minggao
    APPLIED ENERGY, 2022, 306
  • [23] Failure mechanism and thermal runaway behavior of lithium-ion battery induced by arc faults
    Zhang, Yue
    Ping, Ping
    Dai, Xinyi
    Li, Chentong
    Li, Zheng
    Zhuo, Ping
    Tang, Liang
    Kong, Depeng
    Yin, Xiaokang
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2025, 207
  • [24] The Hazards Analysis of Nickel-Rich Lithium-Ion Battery Thermal Runaway under Different States of Charge
    Jiang, Kun
    Gu, Pingwei
    Huang, Peng
    Zhang, Ying
    Duan, Bin
    Zhang, Chenghui
    ELECTRONICS, 2021, 10 (19)
  • [25] Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database
    Feng, Xuning
    Zheng, Siqi
    Ren, Dongsheng
    He, Xiangming
    Wang, Li
    Cui, Hao
    Liu, Xiang
    Jin, Changyong
    Zhang, Fangshu
    Xu, Chengshan
    Hsu, Hungjen
    Gao, Shang
    Chen, Tianyu
    Li, Yalun
    Wang, Tianze
    Wang, Hao
    Li, Maogang
    Ouyang, Minggao
    APPLIED ENERGY, 2019, 246 : 53 - 64
  • [26] Dynamic thermophysical modeling of thermal runaway propagation and parametric sensitivity analysis for large format lithium-ion battery modules
    Wang, Huaibin
    Liu, Bo
    Xu, Chengshan
    Jin, Changyong
    Li, Kuijie
    Du, Zhiming
    Wang, Qinzheng
    Ouyang, Minggao
    Feng, Xuning
    JOURNAL OF POWER SOURCES, 2022, 520
  • [27] A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion
    Jiaqiang, E.
    Xiao, Hanxu
    Tian, Sicheng
    Huang, Yuxin
    RENEWABLE ENERGY, 2024, 229
  • [28] Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules
    Lopez, Carlos F.
    Jeevarajan, Judith A.
    Mukherjee, Partha P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) : A1905 - A1915
  • [29] Experimental Study on the Mechanism of Thermal Runaway Propagation in Lithium-ion Battery Pack for Electric Vehicles
    Jiang F.
    Zhang F.
    Xu C.
    Li C.
    Wang S.
    Ren Y.
    Feng X.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (14): : 23 - 31
  • [30] Thermal Runaway Online Warning Method for Lithium-ion Battery Based on Gas Characteristics
    Yang Q.
    Ma H.
    Duan D.
    Yan J.
    Gaodianya Jishu/High Voltage Engineering, 2022, 48 (03): : 1202 - 1211