Physical, Mechanical, and Microstructure Characteristics of Ultra-High-Performance Concrete Containing Lightweight Aggregates

被引:13
|
作者
Abadel, Aref A. [1 ]
机构
[1] King Saud Univ, Coll Engn, Dept Civil Engn, Riyadh 11421, Saudi Arabia
关键词
durability; lightweight aggregates; thermal analysis; rheology; SEM analysis; REACTIVE POWDER CONCRETE; AUTOGENOUS SHRINKAGE; HIGH-TEMPERATURE; HIGH-STRENGTH; FLY-ASH; PUMICE; UHPC; DURABILITY; CEMENT; WASTE;
D O I
10.3390/ma16134883
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study explores and enhances the resistance of an ultra-high-performance concrete (UHPC) to explosive spalling under elevated temperatures. This study investigates the impact of lightweight aggregates (LWAs) on the mechanical and microstructural properties of the UHPC. Various UHPC specimens were created by replacing silica sand with LWAs in percentages ranging from 0% to 30%. The evaluation of these specimens involved assessing their compressive and flexural strengths, density, mass loss, shrinkage, porosity, and microstructural characteristics using scanning electron microscopy (SEM). This study provides valuable insights by analyzing the influence of lightweight aggregates on the strength, durability, and microstructure of UHPC. The results reveal that incorporating LWAs in the UHPC improved its flowability while decreasing its density, as the percentage of LWAs increased from 5% to 30%. Including 30% LWA resulted in a mass loss of 4.8% at 300 & DEG;C, which reduced the compressive and flexural strengths across all curing durations. However, the UHPC samples subjected to higher temperatures displayed higher strength than those exposed to ambient conditions. The microstructure analysis demonstrated that the UHPC specimens with 30% LWA exhibited increased density due to continuous hydration from the water in the lightweight aggregate. The pore size distribution graph indicated that incorporating more of the LWA increased porosity, although the returns diminished beyond a certain point. Overall, these findings offer valuable insights into the influence of lightweight aggregates on the physical and strength characteristics of UHPC. This research holds significant implications for developing high-performance, lightweight concrete materials.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Rheological and Mechanical Properties of Ultra-High-Performance Concrete Containing Fine Recycled Concrete Aggregates
    Yu, Lanzhen
    Huang, Lili
    Ding, Hui
    MATERIALS, 2019, 12 (22)
  • [2] Effects of graphene oxide on mechanical properties and microstructure of ultra-high-performance lightweight concrete
    Chu, Hongyan
    Qin, Jianjian
    Gao, Li
    Jiang, Jinyang
    Wang, Fengjuan
    Wang, Danqian
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2023, 12 (06) : 647 - 660
  • [3] Improving mechanical properties and microstructure of ultra-high-performance lightweight concrete via graphene oxide
    Jiang, Jinyang
    Qin, Jianjian
    Chu, Hongyan
    JOURNAL OF BUILDING ENGINEERING, 2023, 80
  • [4] Microstructure, XRD, and strength performance of ultra-high-performance lightweight concrete containing artificial lightweight fine aggregate and silica fume
    Rafieizonooz, Mahdi
    Kim, Jang-Ho Jay
    Kim, Jin-su
    Jo, Jae -Bin
    Khankhaje, Elnaz
    JOURNAL OF BUILDING ENGINEERING, 2024, 94
  • [5] Mechanical properties and microstructure of ultra-high-performance concrete with high elastic modulus
    Chu, Hongyan
    Gao, Li
    Qin, Jianjian
    Jiang, Jinyang
    Wang, Danqian
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 335
  • [6] The mechanical property and microstructure of ultra-high performance lightweight concrete
    Wang
    Yan Z.
    Geng L.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2019, 51 (06): : 18 - 24
  • [7] Mechanical and Microstructural Properties of Ultra-High Performance Concrete with Lightweight Aggregates
    Alanazi, Hani
    Elalaoui, Oussama
    Adamu, Musa
    Alaswad, Saleh O.
    Ibrahim, Yasser E.
    Abadel, Aref A.
    Al Fuhaid, Abdulrahman Fahad
    BUILDINGS, 2022, 12 (11)
  • [8] Mechanical Performance and Microstructure of Ultra-High-Performance Concrete Modified by Calcium Sulfoaluminate Cement
    Song, Meimei
    Wang, Chuanlin
    Cui, Ying
    Li, Qiu
    Gao, Zhiyang
    Xie, Tianyu
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [9] Tensile characteristics of ultra-high-performance concrete
    Hu, Aoxiang
    Yu, Jing
    Liang, Xingwen
    Shi, Qingxuan
    MAGAZINE OF CONCRETE RESEARCH, 2018, 70 (06) : 314 - 324
  • [10] Effect of Shale Powder on the Performance of Lightweight Ultra-High-Performance Concrete
    Guo, Kaizheng
    Ding, Qingjun
    MATERIALS, 2022, 15 (20)