Increasing property and logarithmic convexity concerning Dirichlet beta function, Euler numbers, and their ratios

被引:3
作者
Qi, Feng [1 ]
Yao, Yong -Hong [2 ]
机构
[1] Henan Polytech Univ, Inst Math, Jiaozuo 454010, Peoples R China
[2] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2023年 / 52卷 / 01期
关键词
Dirichlet beta function; Euler number; increasing property; logarithmic convexity; ratio; integral representation;
D O I
10.15672/hujms.1099250
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, by virtue of an integral representation of the Dirichlet beta function, with the aid of a relation between the Dirichlet beta function and the Euler numbers, and by means of a monotonicity rule for the ratio of two definite integrals with a parameter, the author finds increasing property and logarithmic convexity of two functions and two sequences involving the Dirichlet beta function, the Euler numbers, and their ratios.
引用
收藏
页码:17 / 22
页数:6
相关论文
共 15 条
  • [1] Abramowitz M, 1972, HDB MATH FUNCTIONS F, V55
  • [2] Dirichlet's eta and beta functions: Concavity and fast computation of their derivatives
    Adell, Jose A.
    Lekuona, Alberto
    [J]. JOURNAL OF NUMBER THEORY, 2015, 157 : 215 - 222
  • [3] Borwein J.M., 2004, EXPT MATH COMPUTATIO
  • [4] Guo BN, 2022, Arxiv, DOI [arXiv:2201.06970, 10.48550/arXiv.2201.06970, DOI 10.48550/ARXIV.2201.06970]
  • [5] INCREASING PROPERTY AND LOGARITOC CONVEXITY OF TWO FUNCTIONS INVOLVING DIRICHLET ETA FUNCTION
    Lim, Dongkyu
    Qi, Feng
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (02): : 463 - 469
  • [6] Pilehrood KH, 2010, DISCRETE MATH THEOR, V12, P223
  • [7] Qi F., 2018, Turkish J. Anal. Number Theory, V6, P129, DOI DOI 10.12691/TJANT-6-5-1
  • [8] Decreasing properties of two ratios defined by three and four polygamma functions
    Qi, Feng
    [J]. COMPTES RENDUS MATHEMATIQUE, 2022, 360 (01) : 89 - 101
  • [9] A ratio of finitely many gamma functions and its properties with applications
    Qi, Feng
    Li, Wen-Hui
    Yu, Shu-Bin
    Du, Xin-Yu
    Guo, Bai-Ni
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (02)
  • [10] A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers
    Qi, Feng
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 351 : 1 - 5