Self-Supporting Electrode Fabricated by Flowing Synthesis for Efficient Hydrogen Evolution Reaction

被引:7
|
作者
Liu, Lin [1 ]
Chen, Yu [1 ]
Chen, Jiaojiao [1 ]
Liu, Wenda [1 ]
Tang, Guoxuan [1 ]
Wen, Haocun [1 ]
Xiao, Zeyi [1 ]
Fan, Senqing [1 ]
机构
[1] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Peoples R China
关键词
self-supporting electrode; flowing synthesis; Pt@Ti membrane; hydrogen evolution reaction; low overpotential; low Tafel slope; NICKEL FOAM; TI PLATE; ELECTROCATALYSTS; NANOPARTICLES; NANOARRAYS; ALLOY;
D O I
10.1021/acssuschemeng.2c07257
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In order to achieve a balance between a good hydrogen evolution reaction (HER) performance and a low amount of catalyst loading, Pt@Ti membrane self-supporting electrodes have been fabricated by flowing synthesis. The characterizations by X-ray diffraction (XRD), X-ray photoelectric spectroscopy (XPS), and transmission electron microscopy (TEM) demonstrate the successful loading of Pt nanoparticles into the pores of a porous Ti membrane substrate. The scanning electron microscope (SEM) results demonstrate that the sizes of the Pt nanoparticles immobilized in Ti membrane pores are mostly in the range of 10-40 nm, and the average size was about 26 nm. The ICP test proves that the amount of Pt loading was only 0.760 mg cm-2. A minimum overpotential of 35 mV and a minimum Tafel slope of 30 mV dec-1 can be achieved for a Pt@Ti membrane self-supporting electrode at a current density of 10 mA cm-2 with 0.5 M H2SO4 as the electrolyte. No decay of current density is observed after a 10 h continuous electrolytic test. Besides, good HER performances can also be obtained under alkaline conditions and neutral conditions for Pt@Ti membrane self-supporting electrodes fabricated by flowing synthesis.
引用
收藏
页码:5506 / 5514
页数:9
相关论文
共 50 条
  • [21] Macroporous NiMo alloy self-supporting electrodes for efficient hydrogen evolution at ultrahigh current densities
    Chen, Yudan
    Chen, Lin
    Xiong, Ying
    Yu, Xinxin
    Tang, Kun
    Zhang, Lixin
    Wu, Mingzai
    MATERIALS ADVANCES, 2023, 4 (13): : 2868 - 2873
  • [22] Self-supporting porous Ni-S electrocatalyst with carbon doping for hydrogen evolution reaction
    Guo, Lingbo
    Yuan, Zhangfu
    Jiao, Kai
    Yu, Xiangtao
    MATERIALS LETTERS, 2021, 282
  • [23] Hierarchically Self-Supporting Phosphorus-Doped CoMoO4 Nanoflowers Arrays toward Efficient Hydrogen Evolution Reaction
    Wen, Yan
    Li, Cun-xin
    Wang, Jie
    Qian, Yin-yin
    Shen, Feng-cui
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (06): : 6814 - 6822
  • [24] Sintered Ni metal as a matrix of robust self-supporting electrode for ultra-stable hydrogen evolution
    Zhao, Yang
    Wei, Shizhong
    Xia, Liangbin
    Pan, Kunming
    Zhang, Bin
    Huang, He
    Dong, Zhili
    Wu, Hong-Hui
    Lin, Junpin
    Pang, Huan
    CHEMICAL ENGINEERING JOURNAL, 2022, 430
  • [25] Research Progress of Non-Noble Metal-Based Self-Supporting Electrode for Hydrogen Evolution Reaction at High Current Density
    Shi, Xiaoqian
    Gu, Wenjing
    Zhang, Bin
    Zhao, Yang
    Zhang, Anran
    Xiao, Wentao
    Wei, Shizhong
    Pang, Huan
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [26] β-FeOOH self-supporting electrode for efficient electrochemical anodic oxidation process
    Yang, Hao
    Bi, Yanfei
    Wang, Ming
    Chen, Chen
    Xu, Zewen
    Chen, Kuo
    Zhou, Yan
    Zhang, Jun
    Niu, Q. Jason
    CHEMOSPHERE, 2020, 261 (261)
  • [27] Plasma nitrided CoCrFeNiMn high entropy alloy coating as a self-supporting electrode for oxygen evolution reaction
    Gao, G. J.
    Xu, J. L.
    Tang, J.
    Zhang, L. W.
    Ma, Y. C.
    Luo, J. M.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 23 : 5357 - 5367
  • [28] CuxO-Modified Nanoporous Cu Foil as a Self-Supporting Electrode for Supercapacitor and Oxygen Evolution Reaction
    Li, Zhenhan
    Lin, Jianbin
    He, Xin
    Xin, Yue
    Liang, Ping
    Zhang, Chi
    NANOMATERIALS, 2022, 12 (12)
  • [29] Boron and phosphorus co-doped NiVFe LDHs@NF as a highly efficient self-supporting electrocatalyst for the hydrogen evolution reaction
    Ma, Xiaoyu
    Zhang, Shihong
    He, Yi
    He, Teng
    Li, Hongjie
    Zhang, Yihan
    Chen, Jingyu
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 886
  • [30] Self-supporting honeycomb coaxial carbon fibers: A new strategy to achieve an efficient hydrogen evolution reaction both in base and acid media
    Lin, Jiaqi
    Yin, Duanduan
    He, Wurigamula
    Wang, Lili
    Yue, Bin
    Wang, Tianqi
    Li, Dan
    Han, Ce
    Dong, Xiangting
    CHEMICAL ENGINEERING JOURNAL, 2024, 488