Constructing a Uniform and Stable Mixed Conductive Layer to Stabilize the Solid-State Electrolyte/Li Interface by Cold Bonding at Mild Conditions

被引:71
作者
Chen, Yi [1 ]
Qian, Ji [1 ,2 ]
Hu, Xin [1 ]
Ma, Yitian [3 ]
Li, Yu [1 ]
Xue, Tianyang [1 ]
Yu, Tianyang [1 ]
Li, Li [1 ,2 ,4 ]
Wu, Feng [1 ,2 ,4 ]
Chen, Renjie [1 ,2 ,4 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Inst Adv Technol, Jinan 250300, Shandong, Peoples R China
[3] Xian Univ Sci & Technol, Sch Mat Sci & Engn, Xian 710054, Peoples R China
[4] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
cold bonding; garnet electrolyte; interfacial modification; RT-MCL; solid-state Li-metal batteries; LITHIUM DENDRITE FORMATION; BATTERY; GROWTH; ANODE;
D O I
10.1002/adma.202212096
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZ) electrolyte is a promising candidate for high-performance solid-state batteries, while its applications are hindered by interfacial problems. Although the utilization of functional coatings and molten lithium (Li) effectively solves the LLZ interfacial compatibility problem with Li metal, it poses problems such as high cost, high danger, and structural damage. Herein, a mixed conductive layer (MCL) is introduced at the LLZ/Li interface (RT-MCL) via an in situ cold bonding process at room temperature. Such a stable and compact RT-MCL can effectively suppress side reactions and protect the crystal structure of LLZ, and it also inhibits growth of Li dendrites and promotes uniform Li deposition. The critical current density (CCD) of the Li symmetric cell composed of RT-MCL-LLZ is increased to 1.8 mA cm(-2) and provides stable cycling performance over 2000 h under 0.5 mA cm(-2). Additionally, this in situ cold bonding treatment can significantly reduce cost and eliminate potential safety issues caused by the high-temperature processing of Li metal. This work highlights tremendous potential of this cold bonding technique in the reasonable design and optimization of the LLZ/Li interface.
引用
收藏
页数:10
相关论文
共 51 条
[1]   Dual-Doped Cubic Garnet Solid Electrolytes with Superior Air Stability [J].
Abrha, Ljalem Hadush ;
Hagos, Tesfaye Teka ;
Nikodimos, Yosef ;
Bezabh, Hailemariam Kassa ;
Berhe, Gebregziabher Brhane ;
Hagos, Teklay Mezgebe ;
Huang, Chen-Jui ;
Tegegne, Wodaje Addis ;
Jiang, Shi-Kai ;
Weldeyohannes, Haile Hisho ;
Wu, She-Huang ;
Su, Wei-Nien ;
Hwang, Bing Joe .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (23) :25709-25717
[2]   Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors [J].
Alexander, George Vadakkethalakel ;
Patra, Srabani ;
Valiyaveetil, Sona ;
Raj, Sobhan ;
Sugumar, Manoj Krishna ;
Din, Mir Mehraj Ud ;
Murugan, Ramaswamy .
JOURNAL OF POWER SOURCES, 2018, 396 :764-773
[3]   In-situ constructed lithium-salt lithiophilic layer inducing bi-functional interphase for stable LLZO/Li interface [J].
Cai, Mingli ;
Jin, Jun ;
Xiu, Tongping ;
Song, Zhen ;
Badding, Michael E. ;
Wen, Zhaoyin .
ENERGY STORAGE MATERIALS, 2022, 47 :61-69
[4]   Robust Conversion-Type Li/Garnet interphases from metal salt solutions [J].
Cai, Mingli ;
Lu, Yang ;
Yao, Liu ;
Jin, Jun ;
Wen, Zhaoyin .
CHEMICAL ENGINEERING JOURNAL, 2021, 417
[5]   Lithiophilic anchor points enabling endogenous symbiotic Li3N interface for homogeneous and stable lithium electrodeposition [J].
Chen, Zhigao ;
Chen, Weimin ;
Wang, Hongxia ;
Zhang, Cheng ;
Qi, Xiaoqun ;
Qie, Long ;
Wu, Fengshou ;
Wang, Liang ;
Yu, Faquan .
NANO ENERGY, 2022, 93
[6]   Stabilization of garnet/Li interphase by diluting the electronic conductor [J].
Feng, Wuliang ;
Hu, Jiaming ;
Qian, Guannan ;
Xu, Zhenming ;
Zan, Guibin ;
Liu, Yijin ;
Wang, Fei ;
Wang, Chunsheng ;
Xia, Yongyao .
SCIENCE ADVANCES, 2022, 8 (42)
[7]   Building an Interfacial Framework: Li/Garnet Interface Stabilization through a Cu6Sn5 Layer [J].
Feng, Wuliang ;
Dong, Xiaoli ;
Lai, Zhengzhe ;
Zhang, Xinyue ;
Wang, Yonggang ;
Wang, Congxiao ;
Luo, Jiayan ;
Xia, Yongyao .
ACS ENERGY LETTERS, 2019, 4 (07) :1725-1731
[8]   Transient Behavior of the Metal Interface in Lithium Metal-Garnet Batteries [J].
Fu, Kun ;
Gong, Yunhui ;
Fu, Zhezhen ;
Xie, Hua ;
Yao, Yonggang ;
Liu, Boyang ;
Carter, Marcus ;
Wachsman, Eric ;
Hu, Liangbing .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (47) :14942-14947
[9]   Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface [J].
Fu, Kun ;
Gong, Yunhui ;
Liu, Boyang ;
Zhu, Yizhou ;
Xu, Shaomao ;
Yao, Yonggang ;
Luo, Wei ;
Wang, Chengwei ;
Lacey, Steven D. ;
Dai, Jiaqi ;
Chen, Yanan ;
Mo, Yifei ;
Wachsman, Eric ;
Hu, Liangbing .
SCIENCE ADVANCES, 2017, 3 (04)
[10]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603