A growing stream of research suggests that pro-biotic fermented milk has a good effect on nonalco-holic fatty liver disease. This work aimed to study the beneficial effects of Lactobacillus rhamnosus hsryfm 1301 fermented milk (fermented milk) on rats with nonalcoholic fatty liver disease induced by a high-fat diet. The results showed that the body weight and the serum levels of total cholesterol, total glyceride, low-density lipoprotein, alanine transaminase, aspartate aminotransferase, free fatty acid, and reactive oxygen species were significantly increased in rats fed a high -fat diet (M) for 8 wk, whereas high-density lipoprotein cholesterol and superoxide dismutase were significantly decreased. However, the body weight and the serum levels of total cholesterol, total glyceride, alanine trans-aminase, aspartate aminotransferase, free fatty acid, reactive oxygen species, interleukin-8, tumor necrosis factor-alpha, and interleukin-6 were significantly decreased with fermented milk (T) for 8 wk, and the number of fat vacuoles in hepatocytes was lower than that in the M group. There were significant differences in 19 metabolites in serum between the M group and the C group (administration of nonfermented milk) and in 17 metabolites between the T group and the M group. The contents of 7 different metabolites, glycine, glyc-erophosphocholine, 1,2-dioleoyl-sn-glycero-3-phospho-choline, thioetheramide-PC, D-aspartic acid, oleic acid, and l-glutamate, were significantly increased in the M group rat serum, and l-palmitoyl carnitine, N6-methyl-l-lysine, thymine, and 2-oxadipic acid were significantly decreased. In the T group rat serum, the contents of 8 different metabolites-1-O-(cis-9-octadecenyl)-2-O-acetyl-sn-glycero-3-phosphocholine, acetylcarnitine, glycine, glycerophosphocholine, 1,2-dioleoyl-sn-glycero-3-phosphocholine, D-aspartic acid, oleic acid, and l-glutamate were significantly decreased, whereas creati-nine and thymine were significantly increased. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that 50 metabolic pathways were enriched in the M/C group and T/M group rat serum, of which 12 metabolic pathways were significantly different, mainly distributed in lipid metabolism, amino acid, and endocrine system metabolic pathways. Fermented milk ameliorated inflammation, oxygenation, and he-patocyte injury by regulating lipid metabolism, amino acid metabolic pathways, and related metabolites in the serum of rats with nonalcoholic fatty liver disease.