Fluid-Solid Coupling-Based Vibration Generation Mechanism of the Multiphase Vortex

被引:26
|
作者
Zheng, Gaoan [1 ]
Shi, Jilin [2 ]
Li, Lin [3 ,4 ,5 ]
Li, Qihan [3 ]
Gu, Zeheng [3 ,5 ]
Xu, Weixin [3 ,5 ]
Lu, Bin [3 ,5 ]
Wang, Chengyan [3 ,5 ]
机构
[1] Zhejiang Coll Water Resources & Hydropower, Coll Mech & Automot Engn, Hangzhou 310018, Peoples R China
[2] Junan Cty Ctr, Linyi City Highway Business Dev Ctr, Linyi 276000, Peoples R China
[3] Zhejiang Univ Technol, Coll Mech Engn, Hangzhou 310014, Peoples R China
[4] Zhejiang Univ, State Key Lab Fluid Power & Mechatron Syst, Hangzhou 310027, Peoples R China
[5] Minist Educ & Zhejiang Prov, Key Lab Special Purpose Equipment & Adv Proc Techn, Hangzhou 310014, Peoples R China
关键词
multiphase vortex; fluid-solid coupling; fluidic vibration; stochastic signal processing; metallurgical pouring process; SIMULATION;
D O I
10.3390/pr11020568
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Multiphase vortices are widely present in the metallurgical pouring processes, chemical material extraction, hydroelectric power plant energy conversion, and other engineering fields. Its critical state detection is of great significance in improving product yield and resource utilization. However, the multiphase vortex is a complex dynamics problem with highly nonlinear features, and its fluid-induced vibration-generation mechanism faces significant challenges. A fluid-solid coupling-based modeling method is proposed to explore mass transfer process with the vorticity distribution and vibration-generation mechanism. A vibration-processing method is utilized to discuss the four flow-state transition features. A fluid-induced vibration experiment platform is established to verify the numerical results. It is found that the proposed modeling method can better reveal the vibration-evolution regularities of the fluid-solid coupling process. The flow field has a maximum value in the complex water-oil-gas coupled flow process, and induces a pressure pulsation phenomenon, and its frequency amplitude is much larger than that of the water phase and water-oil two-phase flow states. In the critical generation state, the increasing amplitude and nonlinear step structure of high-frequency bands (45 Hz similar to 50 Hz) and random pulse components can be used for the online detection of multiphase-coupling states.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Study on the Airflow Level Posture Sensor Based on Fluid-Solid coupling
    Ji, Ming-Ming
    Piao, Lin-Hua
    Li, Bai-Hua
    COMPUTATIONAL MATERIALS SCIENCE, PTS 1-3, 2011, 268-270 : 636 - 639
  • [22] Research progress of fluid-solid coupling model based on CFD-DEM coupling
    Cai G.
    Diao X.
    Yang R.
    Wang B.
    Gao S.
    Liu T.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2024, 56 (01): : 17 - 32
  • [23] Response of a plate in turbulent channel flow: Analysis of fluid-solid coupling
    Anantharamu, Sreevatsa
    Mahesh, Krishnan
    JOURNAL OF FLUIDS AND STRUCTURES, 2021, 100
  • [24] Numerical Simulation and Experimental Study of Fluid-Solid Coupling-Based Air-Coupled Ultrasonic Detection of Stomata Defect of Lithium-Ion Battery
    Li, Honggang
    Zhou, Zhenggan
    SENSORS, 2019, 19 (10):
  • [25] Influence of Anisotropic Rock on Tunnel Stability with Consideration of Fluid-Solid Coupling
    Hwang, RyongHyon
    Yang, TianHong
    Sun, PeiFeng
    ADVANCES IN CIVIL ENGINEERING, PTS 1-4, 2011, 90-93 : 2101 - 2107
  • [26] Fluid-Solid Coupling Modal Analysis of Sessile Droplets
    Shi G.
    Huo M.
    Wang Z.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2020, 48 (02): : 137 - 142and150
  • [27] Research on Propeller Modeling and Fluid-Solid Coupling Analysis
    Due, Hongyi
    Yan, Tianhong
    He, Bo
    Liu, Jixin
    Zhao, Zikui
    MARINE TECHNOLOGY SOCIETY JOURNAL, 2021, 55 (02) : 137 - 149
  • [28] Partitioned Fluid-Solid Coupling for Cardiovascular Blood Flow
    Krittian, Sebastian
    Janoske, Uwe
    Oertel, Herbert
    Boehlke, Thomas
    ANNALS OF BIOMEDICAL ENGINEERING, 2010, 38 (04) : 1426 - 1441
  • [29] Entropic lattice Boltzmann method for multiphase flows: Fluid-solid interfaces
    Mazloomi, Ali M.
    Chikatamarla, Shyam S.
    Karlin, Iliya V.
    PHYSICAL REVIEW E, 2015, 92 (02):
  • [30] Simulation Analysis of Torsion Beam Hydroforming Based on the Fluid-Solid Coupling Method
    Huang, Yu
    Li, Jian
    Yang, Jiachun
    Peng, Yongdong
    Zhang, Weixuan
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2023, 36 (01)