Bridging the complexity gap in computational heterogeneous catalysis with machine learning

被引:144
作者
Mou, Tianyou [1 ]
Pillai, Hemanth Somarajan [1 ]
Wang, Siwen [1 ]
Wan, Mingyu [2 ]
Han, Xue [1 ]
Schweitzer, Neil M. [3 ]
Che, Fanglin [2 ]
Xin, Hongliang [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Chem Engn, Blacksburg, VA 24061 USA
[2] Univ Massachusetts Lowell, Dept Chem Engn, Lowell, MA USA
[3] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL USA
关键词
DENSITY-FUNCTIONAL THEORY; CO2; ELECTROREDUCTION; FREE-ENERGY; DATA-DRIVEN; CHEMISTRY; DESIGN; CONSTRUCTION; GENERATION; DISCOVERY; REDUCTION;
D O I
10.1038/s41929-023-00911-w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Heterogeneous catalysis underpins a wide variety of industrial processes including energy conversion, chemical manufacturing and environmental remediation. Significant advances in computational modelling towards understanding the nature of active sites and elementary reaction steps have occurred over the past few decades. The complexity gap between theory and experiment, however, remains overwhelming largely due to the limiting length and timescales of ab initio simulations, which severely impede the discovery of high-performance catalytic materials. This Review summarizes recent developments and applications of machine learning to narrow and, optimistically, bridge the gap created by the dynamic, mechanistic and chemostructural complexities inherent to the reactive interfaces of practical relevance. We foresee the prospects and challenges of machine learning for the automated design of sustainable catalytic technologies within a data-centric ecosystem that coevolves with computational and data sciences.
引用
收藏
页码:122 / 136
页数:15
相关论文
共 136 条
[1]   Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces [J].
Abild-Pedersen, F. ;
Greeley, J. ;
Studt, F. ;
Rossmeisl, J. ;
Munter, T. R. ;
Moses, P. G. ;
Skulason, E. ;
Bligaard, T. ;
Norskov, J. K. .
PHYSICAL REVIEW LETTERS, 2007, 99 (01)
[2]   Solvent molecules form surface redox mediators in situ and cocatalyze O2 reduction on Pd [J].
Adams, Jason S. ;
Chemburkar, Ashwin ;
Priyadarshini, Pranjali ;
Ricciardulli, Tomas ;
Lu, Yubing ;
Maliekkal, Vineet ;
Sampath, Abinaya ;
Winikoff, Stuart ;
Karim, Ayman M. ;
Neurock, Matthew ;
Flaherty, David W. .
SCIENCE, 2021, 371 (6529) :626-+
[3]   Managing the Computational Chemistry Big Data Problem: The ioChem-BD Platform [J].
Alvarez-Moreno, M. ;
de Graaf, C. ;
Lopez, N. ;
Maseras, F. ;
Poblet, J. M. ;
Bo, C. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (01) :95-103
[4]   Beyond Scaling Relations for the Description of Catalytic Materials [J].
Andersen, Mie ;
Levchenko, Sergey V. ;
Scheffler, Matthias ;
Reuter, Karsten .
ACS CATALYSIS, 2019, 9 (04) :2752-2759
[5]   Free energy of proton transfer at the water-TiO2 interface from ab initio deep potential molecular dynamics [J].
Andrade, Marcos F. Calegari ;
Ko, Hsin-Yu ;
Zhang, Linfeng ;
Car, Roberto ;
Selloni, Annabella .
CHEMICAL SCIENCE, 2020, 11 (09) :2335-2341
[6]   Best practices in machine learning for chemistry comment [J].
Artrith, Nongnuch ;
Butler, Keith T. ;
Coudert, Francois-Xavier ;
Han, Seungwu ;
Isayev, Olexandr ;
Jain, Anubhav ;
Walsh, Aron .
NATURE CHEMISTRY, 2021, 13 (06) :505-508
[7]   Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species [J].
Artrith, Nongnuch ;
Urban, Alexander ;
Ceder, Gerbrand .
PHYSICAL REVIEW B, 2017, 96 (01)
[8]   Understanding the Composition and Activity of Electrocatalytic Nanoalloys in Aqueous Solvents: A Combination of DFT and Accurate Neural Network Potentials [J].
Artrith, Nongnuch ;
Kolpak, Alexie M. .
NANO LETTERS, 2014, 14 (05) :2670-2676
[9]   New tolerance factor to predict the stability of perovskite oxides and halides [J].
Bartel, Christopher J. ;
Sutton, Christopher ;
Goldsmith, Bryan R. ;
Ouyang, Runhai ;
Musgrave, Charles B. ;
Ghiringhelli, Luca M. ;
Scheffler, Matthias .
SCIENCE ADVANCES, 2019, 5 (02)
[10]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)