Endomorphisms of upper triangular matrix rings

被引:1
作者
Vladeva, Dimitrinka [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str Block 8, Sofia 1113, Sofia, Bulgaria
来源
BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY | 2024年 / 65卷 / 02期
关键词
Endomorphism; Idempotent; Triangular matrices over ring; (0,1)-matrix; DERIVATIONS; AUTOMORPHISMS; MAPS;
D O I
10.1007/s13366-023-00688-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the class of endomorphisms alpha of a ring UT M-n(R) of upper triangular n x n matrices such that alpha(eij) is a (0,1)-matrix for any matrix unit e(ij). We use the left and right semicentral idempotents defined and studied by Birkenmeier. We study the idempotent semigroup (E-n(R), .) of endomorphisms of UT M-n(R). An endomorphism alpha is called regular if alpha(e(ii)) = e(ij )or alpha(e(ij)) = 0 for all i = 1, ... , n. In the main results we prove that the class of regular (0,1)-endomorphisms is E-n(R), that the semigroup (En(R), .) consists of all idempotent (0,1)-endomorphisms and all other (0,1)-endomorphisms are roots of idempotents.
引用
收藏
页码:291 / 306
页数:16
相关论文
共 50 条
  • [41] Commuting Jordan Derivations on Triangular Rings Are Zero
    Hosseini, Amin
    Jing, Wu
    MATHEMATICAL NOTES, 2024, 115 (5-6) : 1006 - 1016
  • [42] JORDAN ISOMORPHISMS OF RADICAL FINITARY MATRIX RINGS
    Kuzucuoglu, Feride
    Levchuk, Vladimir M.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2010, 9 (04) : 659 - 667
  • [43] A CHARACTERISATION OF MATRIX RINGS
    Goyal, Dimple Rani
    Khurana, Dinesh
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 107 (01) : 95 - 101
  • [44] STRUCTURE OF IDEMPOTENTS IN POLYNOMIAL RINGS AND MATRIX RINGS
    Huang, Juan
    Kwak, Tai Keun
    Lee, Yang
    Piao, Zhelin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1321 - 1334
  • [45] Some commutativity criteria for prime rings with central values involving two endomorphisms
    Charrabi, K.
    Mamouni, A.
    Nejjar, B.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (03) : 1719 - 1727
  • [46] IDEMPOTENTS IN CERTAIN MATRIX RINGS OVER POLYNOMIAL RINGS
    Balmaceda, Jose Maria P.
    Datu, Joanne Pauline P.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2020, 27 : 1 - 12
  • [47] Multiplicative Lie n-derivations of triangular rings
    Benkovic, Dominik
    Eremita, Daniel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (11) : 4223 - 4240
  • [48] Functional identities of degree 2 in triangular rings revisited
    Eremita, Daniel
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (03) : 534 - 553
  • [49] Trivial generalized matrix rings
    Birkenmeier, G. F.
    Heider, B. J.
    NEARRINGS, NEARFIELDS AND RELATED TOPICS, 2017, : 138 - 151
  • [50] Rings close to periodic with applications to matrix, endomorphism and group rings
    Abyzov, Adel N.
    Barati, Ruhollah
    Danchev, Peter V.
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (05) : 1832 - 1852