Fuzzy process optimization of laser powder bed fusion of 316L stainless steel

被引:3
作者
Ponticelli, Gennaro Salvatore [1 ]
Venettacci, Simone [1 ]
Giannini, Oliviero [1 ]
Guarino, Stefano [1 ]
Horn, Matthias [2 ]
机构
[1] Univ Rome Niccolo Cusano, Dept Engn, Via Don Carlo Gnocchi 3, I-00166 Rome, Italy
[2] Univ Appl Sci Mittweida, Laserinst Hsch Mittweida, Technikumpl 17, D-09648 Mittweida, Germany
关键词
Laser powder bed fusion; Stainless steel; Fuzzy logic; Genetic algorithms; Optimization; Decision-making; PROCESS PARAMETERS; MECHANICAL-PROPERTIES; ENERGY DENSITY; MICROSTRUCTURE; PREDICTION; SIMULATION; STRENGTH; ALUMINUM; DECISION; POROSITY;
D O I
10.1007/s40964-022-00337-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study deals with the fuzzy-based process optimization of 316L stainless steel components manufactured by Laser Powder Bed Fusion for high-performance applications. First, a systematic experimental plan was aimed at determining how the process input parameters, i.e., volumetric energy density and building orientation, affect density, ultimate tensile strength, hardness and roughness. Then, a fuzzy-based model, optimized through genetic algorithms, was developed and tested to find the best process window allowing the obtainment of the most performing mechanical properties as output. The use of the genetic algorithms concerned the identification of the optimal support of the fuzzy numbers at each membership level. The experimental results, when compared with a traditional annealed 316L stainless steel alloy, show an improvement of the mechanical properties, except for the roughness. The proposed fuzzy model shows the ability to replicate the experimental data with an increasing precision for increasing membership level, representing a new tool for understanding how much a modification at the input level can affect both the model precision and the process variability.
引用
收藏
页码:437 / 458
页数:22
相关论文
共 50 条
  • [41] Influence of laser powder bed fusion processing parameters on corrosion behaviour of 316L stainless steel in nitric acid
    Puga, Beatriz
    Lomello, Fernando
    Boussac, Emeline
    Chniouel, Aziz
    Fouchereau, Alexis
    Laghoutaris, Pierre
    Maskrot, Hicham
    METALLURGICAL RESEARCH & TECHNOLOGY, 2022, 119 (05)
  • [42] Fatigue behavior of stainless steel 316L microstruts fabricated by laser powder bed fusion
    Ghosh, Abhi
    Kumar, Amit
    Harris, Adrian
    Kietzig, Anne-Marie
    Brochu, Mathieu
    MATERIALIA, 2022, 26
  • [43] Influence of processing parameters on the density of 316L stainless steel parts manufactured through laser powder bed fusion
    Pragana, Joao P. M.
    Pombinha, Pedro
    Duarte, Valdemar R.
    Rodrigues, Tiago A.
    Oliveira, Joao P.
    Braganca, Ivo M. F.
    Santos, Telmo G.
    Miranda, Rosa M.
    Coutinho, Luisa
    Silva, Carlos M. A.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2020, 234 (09) : 1246 - 1257
  • [44] Combined effect of powder properties and process parameters on the density of 316L stainless steel obtained by laser powder bed fusion
    Ziri, Sabrine
    Hor, Anis
    Mabru, Catherine
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 120 (9-10) : 6187 - 6204
  • [45] Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion
    Chen, Lan
    Richter, Brodan
    Zhang, Xinzhou
    Bertsch, Kaila B.
    Thoma, Dan J.
    Pfefferkorn, Frank E.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 802
  • [46] Effect of laser power on defect, texture, and microstructure of a laser powder bed fusion processed 316L stainless steel
    Choo, Hahn
    Sham, Kin-Ling
    Bohling, John
    Ngo, Austin
    Xiao, Xianghui
    Ren, Yang
    Depond, Philip J.
    Matthews, Manyalibo J.
    Garlea, Elena
    MATERIALS & DESIGN, 2019, 164
  • [47] Heat Treatment Effect on the Corrosion Resistance of 316L Stainless Steel Produced by Laser Powder Bed Fusion
    Sangoi, Kevin
    Nadimi, Mahdi
    Song, Jie
    Fu, Yao
    METALS, 2025, 15 (01)
  • [48] On the texture and strength of a 316L steel processed by powder bed fusion
    Kuzminova, Yulia O.
    Evlashin, Stanislav A.
    Belyakov, Andrey N.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 913
  • [49] Melt Pool characteristics on surface roughness and printability of 316L stainless steel in laser powder bed fusion
    Zhang, Tianyu
    Yuan, Lang
    RAPID PROTOTYPING JOURNAL, 2024,
  • [50] Effect of scanning speed on fatigue behavior of 316L stainless steel fabricated by laser powder bed fusion
    Cao, Yinfeng
    Moumni, Ziad
    Zhu, Jihong
    Gu, Xiaojun
    Zhang, Yahui
    Zhai, Xingyue
    Zhang, Weihong
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2023, 319