Bayesian Inference for State-Space Models With Student-t Mixture Distributions

被引:62
作者
Zhang, Tianyu [1 ]
Zhao, Shunyi [1 ]
Luan, Xiaoli [1 ]
Liu, Fei [1 ]
机构
[1] Jiangnan Univ, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive tuning parameter; Bayesian inference; outliers; student-t mixture distribution; FILTER;
D O I
10.1109/TCYB.2022.3183104
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article proposes a robust Bayesian inference approach for linear state-space models with nonstationary and heavy-tailed noise for robust state estimation. The predicted distribution is modeled as the hierarchical Student-t distribution, while the likelihood function is modified to the Student-t mixture distribution. By learning the corresponding parameters online, informative components of the Student-t mixture distribution are adapted to approximate the statistics of potential uncertainties. Then, the obstacle caused by the coupling of the updated parameters is eliminated by the variational Bayesian (VB) technique and fixed-point iterations. Discussions are provided to show the reasons for the achieved advantages analytically. Using the Newtonian tracking example and a three degree-of-freedom (DOF) hover system, we show that the proposed inference approach exhibits better performance compared with the existing method in the presence of modeling uncertainties and measurement outliers.
引用
收藏
页码:4435 / 4445
页数:11
相关论文
共 33 条
[1]   Approximate Inference in State-Space Models With Heavy-Tailed Noise [J].
Agamennoni, Gabriel ;
Nieto, Juan I. ;
Nebot, Eduardo M. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (10) :5024-5037
[2]  
Bernardo J. M., 2009, Bayesian theory
[3]  
Chung Uijung, 2020, PR MACH LEARN RES, V119
[4]   A Scalable Algorithm for Event-Triggered State Estimation With Unknown Parameters and Switching Topologies Over Sensor Networks [J].
Ding, Derui ;
Wang, Zidong ;
Han, Qing-Long .
IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (09) :4087-4097
[5]   Student-t mixture labeled multi-Bernoulli filter for multi-target tracking with heavy-tailed noise [J].
Dong, Peng ;
Jing, Zhongliang ;
Leung, Henry ;
Shen, Kai ;
Wang, Jinran .
SIGNAL PROCESSING, 2018, 152 :331-339
[6]   Robust Kalman Filter Based on a Generalized Maximum-Likelihood-Type Estimator [J].
Gandhi, Mital A. ;
Mili, Lamine .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (05) :2509-2520
[7]   A new dead-time compensator to control stable and integrating processes with long dead-time [J].
Garcia, Pedro ;
Albertos, Pedro .
AUTOMATICA, 2008, 44 (04) :1062-1071
[8]   A Threshold-Parameter-Dependent Approach to Designing Distributed Event-Triggered H∞ Consensus Filters Over Sensor Networks [J].
Ge, Xiaohua ;
Han, Qing-Long ;
Wang, Zidong .
IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (04) :1148-1159
[9]   Variational Adaptive Kalman Filter With Gaussian-Inverse-Wishart Mixture Distribution [J].
Huang, Yulong ;
Zhang, Yonggang ;
Shi, Peng ;
Chambers, Jonathon .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (04) :1786-1793
[10]   A Novel Adaptive Kalman Filter With Inaccurate Process and Measurement Noise Covariance Matrices [J].
Huang, Yulong ;
Zhang, Yonggang ;
Wu, Zhemin ;
Li, Ning ;
Chambers, Jonathon .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (02) :594-601