An optimal robust design method for fractional-order reset controller

被引:1
|
作者
Wang, Shaohua [1 ]
Sun, Yixiu [1 ]
Li, Xiaoqing [1 ]
Han, Bin [1 ]
Luo, Ying [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Luoyu Rd 1037, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Clegg integrator; fraction-order control; nonlinear control; reset control; robustness; STABILITY ANALYSIS; SYSTEMS;
D O I
10.1002/asjc.2884
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a novel design method for the reset controller structure (i.e., fractional-order proportional and integral plus Clegg integrator (PI alpha$$ {}<^>{\alpha } $$ + CI alpha$$ {}<^>{\alpha } $$)), is proposed for a second-order plus time delay plant. To this end, the designer can get an optimal fractional reset controller that gives the control system more phase margin over the base linear PI controller and robust to loop gain variation. The describing function method is used to investigate the capability of phase lead and the frequency domain properties of PI alpha$$ {}<^>{\alpha } $$ + CI alpha$$ {}<^>{\alpha } $$. The gain crossover frequency and phase margin specifications ensure the stability of the control system, and the flat phase constraint makes the control system robust to loop gain variations. Meanwhile, the integral of time and absolute error (ITAE) value is applied to achieve the optimal dynamic performance as the cost function. PI alpha$$ {}<^>{\alpha } $$ + CI alpha$$ {}<^>{\alpha } $$ is compared with its integer-order counterpart (i.e., proportional and integral plus Clegg integrator (PI + CI) controller) and their base controllers (i.e., integer-order PI and fractional-order PI controllers) in terms of the step response and robustness to loop gain variations. The simulation results illustrate that the PI alpha$$ {}<^>{\alpha } $$ + CI alpha$$ {}<^>{\alpha } $$ control system obtains lower overshoot and oscillation and better robustness to loop gain variations than others. The experiments are performed on the speed control of an air bearing stage. Experimental results show that the designed PI alpha$$ {}<^>{\alpha } $$ + CI alpha$$ {}<^>{\alpha } $$ control system behaves better than others. The proposed PI alpha$$ {}<^>{\alpha } $$ + CI alpha$$ {}<^>{\alpha } $$ design method can be applied to other general control plants easily.
引用
收藏
页码:1086 / 1101
页数:16
相关论文
共 50 条
  • [1] Development of Robust Fractional-Order Reset Control
    Chen, Linda
    Saikumar, Niranjan
    HosseinNia, S. Hassan
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (04) : 1404 - 1417
  • [2] Optimal fractional-order controller design using direct synthesis method
    Yumuk, Erhan
    Guzelkaya, Mujde
    Eksin, Ibrahim
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (18) : 2960 - 2967
  • [3] General robustness analysis and robust fractional-order PD controller design for fractional-order plants
    Liu, Lu
    Zhang, Shuo
    Xue, Dingyu
    Chen, Yang Quan
    IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (12) : 1730 - 1736
  • [4] Fractional-order single state reset element
    Karbasizadeh, Nima
    Saikumar, Niranjan
    HosseinNia, S. Hassan
    NONLINEAR DYNAMICS, 2021, 104 (01) : 413 - 427
  • [5] Design of Robust Fractional-order Controller for 4-Leg Inverter
    Shegne, Rohan
    Patil, Mukesh D.
    Vyawahare, Vishwesh A.
    Bhusari, Balu P.
    2016 IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, DRIVES AND ENERGY SYSTEMS (PEDES), 2016,
  • [6] Non-symmetrical Optimum Design Method of Fractional-order PID Controller
    Boskovic, Marko C.
    Rapaic, Milan R.
    Sekara, Tomislav B.
    Govedarica, Vidan
    2018 INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (INDEL 2018), 2018,
  • [7] Fractional-order single state reset element
    Nima Karbasizadeh
    Niranjan Saikumar
    S. Hassan HosseinNia
    Nonlinear Dynamics, 2021, 104 : 413 - 427
  • [8] Fractional-order reset control: Application to a servomotor
    Hassan HosseinNia, S.
    Tejado, Ines
    Vinagre, Blas M.
    MECHATRONICS, 2013, 23 (07) : 781 - 788
  • [9] Design of robust fractional-order lead-lag controller for uncertain systems
    Khiabani, Ataollah Gogani
    Babazadeh, Reza
    IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (18) : 2447 - 2455
  • [10] Robust yaw control of autonomous underwater vehicle based on fractional-order PID controller
    Liu, Lu
    Zhang, Lichuan
    Pan, Guang
    Zhang, Shuo
    OCEAN ENGINEERING, 2022, 257