AN Lk1 ∧ Lkp APPROACH FOR THE NON-CUTOFF BOLTZMANN EQUATION IN R3+

被引:2
作者
Duan, Renjun [1 ]
Sakamoto, Shota [2 ]
Ueda, Yoshihiro [3 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] Kyushu Univ, Fac Math, Fukuoka 8190395, Japan
[3] Kobe Univ, Grad Sch Maritime Sci, Kobe 6580022, Japan
关键词
Boltzmann equation; angular non-cutoff; low regularity solutions; global existence; large time behavior; CRITICAL BESOV SPACE; OPTIMAL TIME DECAY; EXPONENTIAL DECAY; CLASSICAL-SOLUTIONS; GLOBAL-SOLUTIONS; ANGULAR CUTOFF; EXISTENCE; EQUILIBRIUM; STABILITY; SYSTEM;
D O I
10.1137/22M1533232
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, we develop an L-k(1) boolean AND L-k(p) approach to construct global solutions to the Cauchy problem on the non-cutoff Boltzmann equation near equilibrium in R-3. In particular, only smallness of IITxf0IIL1\capLp(R3k;L2(R3v)) with 3/2 < p \leq oo is imposed on initial data f0(x, v), where Txf0(k, v) is the Fourier transform in space variable. This provides the first result on the global existence of such low-regularity solutions without relying on Sobolev embedding H2(R3x) \subset L\infty(R3x) in the case of the whole space. Different from the use of sufficiently smooth Sobolev spaces in the classical results [P. T. Gressman and R. M. Strain, J. Amer. Math. Soc., 24 (2011), pp. 771--847] and [R. Alexandre et al., J. Funct. Anal., 262 (2012), pp. 915-1010], there is a crucial difference between the torus case and the whole space case for low-regularity solutions under consideration. In fact, for the former, it is enough to take the only L1k norm corresponding to the Weiner space as studied in [R. J. Duan et al., Comm. Pure Appl. Math., 74 (2021), pp. 932-1020]. In contrast, for the latter, the extra interplay with the Lpk norm plays a vital role in controlling the nonlinear collision term due to the degenerate dissipation of the macroscopic component. Indeed, the propagation of the Lpk norm helps gain an almost optimal decay rate (1+t) - 32 (1 - 1p )+ of the L1k norm via the time-weighted energy estimates in the spirit of the idea of [S. Kawashima, J. Hyperbolic Differ. Equ., 1 (2004), pp. 581--603] and, in turn, this is necessarily used for establishing the global existence.
引用
收藏
页码:762 / 800
页数:39
相关论文
共 41 条
  • [1] The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential
    Alexandre, R.
    Morimoto, Y.
    Ukai, S.
    Xu, C. -J.
    Yang, T.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (03) : 915 - 1010
  • [2] The Boltzmann Equation Without Angular Cutoff in the Whole Space: Qualitative Properties of Solutions
    Alexandre, R.
    Morimoto, Y.
    Ukai, S.
    Xu, C. -J.
    Yang, T.
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (02) : 599 - 661
  • [3] Global Existence and Full Regularity of the Boltzmann Equation Without Angular Cutoff
    Alexandre, R.
    Morimoto, Y.
    Ukai, S.
    Xu, C. -J.
    Yang, T.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 304 (02) : 513 - 581
  • [4] LOCAL EXISTENCE WITH MILD REGULARITY FOR THE BOLTZMANN EQUATION
    Alexandre, Radjesvarane
    Morimoto, Yoshinori
    Ukai, Seiji
    Xu, Chao-Jiang
    Yang, Tong
    [J]. KINETIC AND RELATED MODELS, 2013, 6 (04) : 1011 - 1041
  • [5] ALONSO R., 2010, arXiv
  • [6] On the exponential decay to equilibrium of the degenerate linear Boltzmann equation
    Bernard, Etienne
    Salvarani, Francesco
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (09) : 1934 - 1954
  • [8] On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation
    Desvillettes, L
    Villani, C
    [J]. INVENTIONES MATHEMATICAE, 2005, 159 (02) : 245 - 316
  • [9] Optimal decay estimates on the linearized boltzmann equation with time dependent force and their applications
    Duan, Renjun
    Ukai, Seiji
    Yang, Tong
    Zhao, Huijiang
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 277 (01) : 189 - 236
  • [10] Global Mild Solutions of the Landau andNon-CutoffBoltzmann Equations
    Duan, Renjun
    Liu, Shuangqian
    Sakamoto, Shota
    Strain, Robert M.
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2021, 74 (05) : 932 - 1020