Concentration phenomena for a fractional relativistic Schrödinger equation with critical growth

被引:8
作者
Ambrosio, Vincenzo [1 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche 12, I-60131 Ancona, Italy
关键词
fractional relativistic Schrodinger operator; critical exponent; extension method; variational methods; SCHRODINGER-OPERATORS; POSITIVE SOLUTIONS; EXTENSION PROBLEM; EXISTENCE; STATES;
D O I
10.1515/anona-2023-0123
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the following fractional relativistic Schr & ouml;dinger equation with critical growth: {(-Delta+m(2))su+V(epsilon x)u=f(u)+u(2 & lowast;)s(-1) in R-N,R- ( )u is an element of H-s(R-N),u>0 in R-N, where epsilon>0 is a small parameter, s is an element of(0,1), m>0, N>2s, 2(s)(& lowast;)=(2N)/(N-2s )is the fractional critical exponent, (-Delta+m(2))(s) is the fractional relativistic Schr & ouml;dinger operator, V:R-N -> R is a continuous potential, and f:R -> R is a superlinear continuous nonlinearity with subcritical growth at infinity. Under suitable assumptions on the potential V, we construct a family of positive solutions u(epsilon)is an element of H-s(R-N), with exponential decay, which concentrates around a local minimum of V as epsilon -> 0.
引用
收藏
页数:41
相关论文
共 45 条
[31]   THE CHANDRASEKHAR THEORY OF STELLAR COLLAPSE AS THE LIMIT OF QUANTUM-MECHANICS [J].
LIEB, EH ;
YAU, HT .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 112 (01) :147-174
[32]  
Lions P.L., 1985, REV MAT IBEROAM, V1, P45
[33]  
Lions P.L., 1985, Rev. Mat. Iberoam, V1, P145, DOI [10.4171/RMI/6, DOI 10.4171/RMI/6]
[35]   ON A CLASS OF NONLINEAR SCHRODINGER-EQUATIONS [J].
RABINOWITZ, PH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1992, 43 (02) :270-291
[36]   Extension Problem and Harnack's Inequality for Some Fractional Operators [J].
Raul Stinga, Pablo ;
Luis Torrea, Jose .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (11) :2092-2122
[37]   Estimates of Green function for relativistic α-stable process [J].
Ryznar, M .
POTENTIAL ANALYSIS, 2002, 17 (01) :1-23
[38]  
Servadei R, 2015, T AM MATH SOC, V367, P67
[39]   Existence result for fractional Schrodinger-Poisson systems involving a Bessel operator without Ambrosetti-Rabinowitz condition [J].
Shen, Liejun .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (01) :296-306
[40]  
Stein E. M., 1970, Princeton Math. Series