Concentration phenomena for a fractional relativistic Schrödinger equation with critical growth

被引:8
作者
Ambrosio, Vincenzo [1 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche 12, I-60131 Ancona, Italy
关键词
fractional relativistic Schrodinger operator; critical exponent; extension method; variational methods; SCHRODINGER-OPERATORS; POSITIVE SOLUTIONS; EXTENSION PROBLEM; EXISTENCE; STATES;
D O I
10.1515/anona-2023-0123
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the following fractional relativistic Schr & ouml;dinger equation with critical growth: {(-Delta+m(2))su+V(epsilon x)u=f(u)+u(2 & lowast;)s(-1) in R-N,R- ( )u is an element of H-s(R-N),u>0 in R-N, where epsilon>0 is a small parameter, s is an element of(0,1), m>0, N>2s, 2(s)(& lowast;)=(2N)/(N-2s )is the fractional critical exponent, (-Delta+m(2))(s) is the fractional relativistic Schr & ouml;dinger operator, V:R-N -> R is a continuous potential, and f:R -> R is a superlinear continuous nonlinearity with subcritical growth at infinity. Under suitable assumptions on the potential V, we construct a family of positive solutions u(epsilon)is an element of H-s(R-N), with exponential decay, which concentrates around a local minimum of V as epsilon -> 0.
引用
收藏
页数:41
相关论文
共 45 条
[11]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162
[12]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71
[13]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[14]  
Bucur C, 2016, LECT NOTES UNIONE MA, V20, P1, DOI 10.1007/978-3-319-28739-3
[15]   Remarks about a generalized pseudo-relativistic Hartree equation [J].
Bueno, H. ;
Miyagaki, O. H. ;
Pereira, G. A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (01) :876-909
[16]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[17]   RELATIVISTIC SCHRODINGER-OPERATORS - ASYMPTOTIC-BEHAVIOR OF THE EIGENFUNCTIONS [J].
CARMONA, R ;
MASTERS, WC ;
SIMON, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 91 (01) :117-142
[18]   Best constants for Sobolev inequalities for higher order fractional derivatives [J].
Cotsiolis, A ;
Tavoularis, NK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 295 (01) :225-236
[19]   Local mountain passes for semilinear elliptic problems in unbounded domains [J].
delPino, M ;
Felmer, PL .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (02) :121-137
[20]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573