Concentration phenomena for a fractional relativistic Schrödinger equation with critical growth

被引:6
作者
Ambrosio, Vincenzo [1 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche 12, I-60131 Ancona, Italy
关键词
fractional relativistic Schrodinger operator; critical exponent; extension method; variational methods; SCHRODINGER-OPERATORS; POSITIVE SOLUTIONS; EXTENSION PROBLEM; EXISTENCE; STATES;
D O I
10.1515/anona-2023-0123
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the following fractional relativistic Schr & ouml;dinger equation with critical growth: {(-Delta+m(2))su+V(epsilon x)u=f(u)+u(2 & lowast;)s(-1) in R-N,R- ( )u is an element of H-s(R-N),u>0 in R-N, where epsilon>0 is a small parameter, s is an element of(0,1), m>0, N>2s, 2(s)(& lowast;)=(2N)/(N-2s )is the fractional critical exponent, (-Delta+m(2))(s) is the fractional relativistic Schr & ouml;dinger operator, V:R-N -> R is a continuous potential, and f:R -> R is a superlinear continuous nonlinearity with subcritical growth at infinity. Under suitable assumptions on the potential V, we construct a family of positive solutions u(epsilon)is an element of H-s(R-N), with exponential decay, which concentrates around a local minimum of V as epsilon -> 0.
引用
收藏
页数:41
相关论文
共 45 条
  • [11] On some critical problems for the fractional Laplacian operator
    Barrios, B.
    Colorado, E.
    de Pablo, A.
    Sanchez, U.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) : 6133 - 6162
  • [12] A concave-convex elliptic problem involving the fractional Laplacian
    Braendle, C.
    Colorado, E.
    de Pablo, A.
    Sanchez, U.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) : 39 - 71
  • [13] A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS
    BREZIS, H
    LIEB, E
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) : 486 - 490
  • [14] Bucur C, 2016, LECT NOTES UNIONE MA, V20, P1, DOI 10.1007/978-3-319-28739-3
  • [15] Remarks about a generalized pseudo-relativistic Hartree equation
    Bueno, H.
    Miyagaki, O. H.
    Pereira, G. A.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (01) : 876 - 909
  • [16] An extension problem related to the fractional Laplacian
    Caffarelli, Luis
    Silvestre, Luis
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) : 1245 - 1260
  • [17] RELATIVISTIC SCHRODINGER-OPERATORS - ASYMPTOTIC-BEHAVIOR OF THE EIGENFUNCTIONS
    CARMONA, R
    MASTERS, WC
    SIMON, B
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 91 (01) : 117 - 142
  • [18] Best constants for Sobolev inequalities for higher order fractional derivatives
    Cotsiolis, A
    Tavoularis, NK
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 295 (01) : 225 - 236
  • [19] Local mountain passes for semilinear elliptic problems in unbounded domains
    delPino, M
    Felmer, PL
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (02) : 121 - 137
  • [20] Hitchhiker's guide to the fractional Sobolev spaces
    Di Nezza, Eleonora
    Palatucci, Giampiero
    Valdinoci, Enrico
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05): : 521 - 573