Using Artificial Intelligence as a Melanoma Screening Tool in Self-Referred Patients

被引:6
作者
Crawford, Madeleine E. [1 ]
Kamali, Kiyana [1 ]
Dorey, Rachel A. [1 ]
Macintyre, Olivia C. [1 ]
Cleminson, Kristyna [1 ]
Macgillivary, Michael L. [1 ]
Green, Peter J. [1 ]
Langley, Richard G. [1 ]
Purdy, Kerri S. [1 ]
Decoste, Ryan C. [2 ]
Gruchy, Jennette R. [2 ]
Pasternak, Sylvia [2 ]
Oakley, Amanda [3 ]
Hull, Peter R. [1 ,4 ,5 ]
机构
[1] Dalhousie Univ, Dept Med, Div Clin Dermatol & Cutaneous Sci, Halifax, NS, Canada
[2] Dalhousie Univ, Dept Pathol, Halifax, NS, Canada
[3] Univ Auckland, Dept Med, Waikato Clin Campus, Hamilton, New Zealand
[4] Dalhousie Univ, Div Clin Dermatol & Cutaneous Sci, Dept Med, QEII 4-193 Dickson Bldg,5820 Univ Ave, Halifax, NS B3H 2Y9, Canada
[5] Nova Scotia Hlth, QEII 4-193 Dickson Bldg,5820 Univ Ave, Halifax, NS B3H2Y9, Canada
关键词
artificial intelligence; convoluted neural networks; deep learning; dermoscopy; melanoma; melanoma detection; melanoma screening; machine learning; CONVOLUTIONAL NEURAL-NETWORK; PERFORMANCE; ACCURACY;
D O I
10.1177/12034754231216967
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Introduction: Early detection of melanoma requires timely access to medical care. In this study, we examined the feasibility of using artificial intelligence (AI) to flag possible melanomas in self-referred patients concerned that a skin lesion might be cancerous. Methods: Patients were recruited for the study through advertisements in 2 hospitals in Halifax, Nova Scotia, Canada. Lesions of concern were initially examined by a trained medical student and if the study criteria were met, the lesions were then scanned using the FotoFinder System((R)). The images were analyzed using their proprietary computer software. Macroscopic and dermoscopic images were evaluated by 3 experienced dermatologists and a senior dermatology resident, all blinded to the AI results. Suspicious lesions identified by the AI or any of the 3 dermatologists were then excised. Results: Seventeen confirmed malignancies were found, including 10 melanomas. Six melanomas were not flagged by the AI. These lesions showed ambiguous atypical melanocytic proliferations, and all were diagnostically challenging to the dermatologists and to the dermatopathologists. Eight malignancies were seen in patients with a family history of melanoma. The AI's ability to diagnose malignancy is not inferior to the dermatologists examining dermoscopic images. Conclusion: AI, used in this study, may serve as a practical skin cancer screening aid. While it does have technical and diagnostic limitations, its inclusion in a melanoma screening program, directed at those with a concern about a particular lesion would be valuable in providing timely access to the diagnosis of skin cancer.
引用
收藏
页码:37 / 43
页数:7
相关论文
共 16 条
[1]   Who detects melanoma? Impact of detection patterns on characteristics and prognosis of patients with melanoma [J].
Antonio Aviles-Izquierdo, Jose ;
Molina-Lopez, Irene ;
Rodriguez-Lomba, Enrique ;
Marquez-Rodas, Ivan ;
Suarez-Fernandez, Ricardo ;
Lazaro-Ochaita, Pablo .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2016, 75 (05) :967-974
[2]   Accuracy in melanoma detection: A 10-year multicenter survey [J].
Argenziano, Giuseppe ;
Cerroni, Lorenzo ;
Zalaudek, Iris ;
Staibano, Stefania ;
Hofmann-Wellenhof, Rainer ;
Arpaia, Nicola ;
Bakos, Renato Marchiori ;
Balme, Brigitte ;
Bandic, Jadran ;
Bandelloni, Roberto ;
Brunasso, Alexandra M. G. ;
Cabo, Horacio ;
Calcara, David A. ;
Carlos-Ortega, Blanca ;
Carvalho, Ana Carolina ;
Casas, Gabriel ;
Dong, Huiting ;
Ferrara, Gerardo ;
Filotico, Raffaele ;
Gomez, Guillermo ;
Halpern, Allan ;
Ilardi, Gennaro ;
Ishiko, Akira ;
Kandiloglu, Gulsen ;
Kawasaki, Hiroshi ;
Kobayashi, Ken ;
Koga, Hiroshi ;
Kovalyshyn, Ivanka ;
Langford, David ;
Liu, Xin ;
Marghoob, Ashfaq A. ;
Mascolo, Massimo ;
Massone, Cesare ;
Mazzoni, Laura ;
Menzies, Scott ;
Minagawa, Akane ;
Nugnes, Loredana ;
Ozdemir, Fezal ;
Pellacani, Giovanni ;
Seidenari, Stefania ;
Siamas, Katherine ;
Stanganelli, Ignazio ;
Stoecker, William V. ;
Tanaka, Masaru ;
Thomas, Luc ;
Tschandl, Philipp ;
Kittler, Harald .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2012, 67 (01) :54-U274
[3]   Population-Based Study Detailing Cutaneous Melanoma Incidence and Mortality Trends in Canada [J].
Conte, Santina ;
Ghazawi, Feras M. ;
Le, Michelle ;
Nedjar, Hacene ;
Alakel, Akram ;
Lagace, Francois ;
Mukovozov, Ilya M. ;
Cyr, Janelle ;
Mourad, Ahmed ;
Miller Jr, Wilson H. H. ;
Claveau, Joel ;
Salopek, Thomas G. ;
Netchiporouk, Elena ;
Gniadecki, Robert ;
Sasseville, Denis ;
Rahme, Elham ;
Litvinov, Ivan V. .
FRONTIERS IN MEDICINE, 2022, 9
[4]   Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined naevi and melanomas [J].
Fink, C. ;
Blum, A. ;
Buhl, T. ;
Mitteldorf, C. ;
Hofmann-Wellenhof, R. ;
Deinlein, T. ;
Stolz, W. ;
Trennheuser, L. ;
Cussigh, C. ;
Deltgen, D. ;
Winkler, J. K. ;
Toberer, F. ;
Enk, A. ;
Rosenberger, A. ;
Haenssle, H. A. .
JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY AND VENEREOLOGY, 2020, 34 (06) :1355-1361
[5]   Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions [J].
Haenssle, H. A. ;
Fink, C. ;
Toberer, F. ;
Winkler, J. ;
Stolz, W. ;
Deinlein, T. ;
Hofmann-Wellenhof, R. ;
Lallas, A. ;
Emmer, S. ;
Buhl, T. ;
Zutt, M. ;
Blum, A. ;
Abassi, M. S. ;
Thomas, L. ;
Tromme, I ;
Tschandl, P. ;
Enk, A. ;
Rosenberger, A. .
ANNALS OF ONCOLOGY, 2020, 31 (01) :137-143
[6]  
Johansson M., 2019, COCHRANE DB SYST REV, V6
[7]  
Johnson MM, 2017, MELANOMA MANAG, V4, P13, DOI 10.2217/mmt-2016-0022
[8]   MEASUREMENT OF OBSERVER AGREEMENT FOR CATEGORICAL DATA [J].
LANDIS, JR ;
KOCH, GG .
BIOMETRICS, 1977, 33 (01) :159-174
[9]   The use of noninvasive imaging techniques in the diagnosis of melanoma: a prospective diagnostic accuracy study [J].
MacLellan, A. Nikolas ;
Price, Emma L. ;
Publicover-Brouwer, Pamela ;
Matheson, Kara ;
Ly, Thai Yen ;
Pasternak, Sylvia ;
Walsh, Noreen M. ;
Gallant, Christopher J. ;
Oakley, Amanda ;
Hull, Peter R. ;
Langley, Richard G. .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2021, 85 (02) :353-359
[10]   Number needed to biopsy ratio and diagnostic accuracy for melanoma detection [J].
Marchetti, Michael A. ;
Yu, Ashley ;
Nanda, Japbani ;
Tschandl, Philipp ;
Kittler, Harald ;
Marghoob, Ashfaq A. ;
Halpern, Allan C. ;
Dusza, Stephen W. .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2020, 83 (03) :780-787