Cobalt(II)-complex modified Ag electrode for efficient and selective electrochemical reduction of CO2 to CO

被引:10
|
作者
Jiang, Xingxin [1 ]
Ren, Xiaohui [1 ]
Chen, Rongsheng [2 ]
Ma, Feng [2 ]
He, Wenping [1 ]
Zhang, Tian [1 ]
Wen, Ying [1 ]
Shi, Li [3 ]
Ren, Long [4 ]
Liu, Huating [5 ]
Wang, Xusheng [6 ]
Ni, Hongwei [1 ]
机构
[1] Wuhan Univ Sci & Technol, Fac Mat, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Sch Chem & Chem Engn, Wuhan 430081, Peoples R China
[3] Ningbo Univ, Sch Mat Sci & Chem Engn, Ningbo 315211, Zhejiang, Peoples R China
[4] Wuhan Univ Technol, Int Sch Mat Sci & Engn, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[5] Wuhan Polytech Univ, Sch Elect & Elect Engn, Wuhan 430023, Peoples R China
[6] Zhejiang Sci Tech Univ, Inst Funct Porous Mat, Sch Mat Sci & Engn, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Silver; Cobalt bipyridine; CO2; reduction; Metal-molecule interaction; CARBON-DIOXIDE; HYDROGEN EVOLUTION; CONVERSION; METHANOL; COMPETITION; PYRIDINE; SURFACE; H-2; ENHANCEMENT; ADSORPTION;
D O I
10.1016/j.jelechem.2023.117860
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Electrochemical conversion of CO2 into CO, powered by renewable electricity, offers one means to address the need for the storage of intermittent renewable energy. However, it is challenging because the competing HER is hard to avoid, which significantly compromises the selectivity to CO and reduces the efficiency of CO2RR de -vices. This study reports a cooperative catalyst design of metal-molecule catalyst interfaces with the goal of high local concentration of CO2 and stabilizing the intermediate, which improves the electrosynthesis of CO. The strategy is implemented by functionalizing the silver surface with cobalt (II)-complexes to promote the selective electrolysis of CO2 to CO. We report a CO2-to-CO Faradaic efficiency of 98.5 % and a partial current density of 16.52 mA cm-2 at -1.1 V vs. RHE. Mechanism studies reveal that the catalytic performance of the Ag/Co(bpy)32+ correlates with the metal-molecule interaction, which provide new opportunities for construction and design of high-efficient catalysts toward CO2 reduction.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Monolithic CI-Modified Nanoporous Ag Nanowires for Electrochemical CO2 Reduction to CO
    Park, Jae Yong
    Dong, Wan Jae
    Lee, Jong-Lam
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (02): : 1627 - 1634
  • [2] Thiocyanate-Modified Silver Nanofoam for Efficient CO2 Reduction to CO
    Wei, Li
    Li, Hao
    Chen, Junsheng
    Yuan, Ziwen
    Huang, Cbanwei
    Liao, Xiaozhou
    Henkelman, Graeme
    Chen, Yuan
    ACS CATALYSIS, 2020, 10 (02) : 1444 - 1453
  • [3] Highly Efficient and Selective Photocatalytic CO2 Reduction to CO in Water by a Cobalt Porphyrin Molecular Catalyst
    Call, Arnau
    Cibian, Mihaela
    Yamamoto, Keiya
    Nakazono, Takashi
    Yamauchi, Kosei
    Sakai, Ken
    ACS CATALYSIS, 2019, 9 (06): : 4867 - 4874
  • [4] Efficient Electrochemical Reduction of CO2 to CO in Ionic Liquids
    Hu, Yanjie
    Feng, Jiaqi
    Zhang, Xiangping
    Gao, Hongshuai
    Jin, Saimeng
    Liu, Lei
    Shen, Weifeng
    CHEMISTRYSELECT, 2021, 6 (37): : 9873 - 9879
  • [5] Electrochemical reconstruction of ZnO for selective reduction of CO2 to CO
    Luo, Wen
    Zhang, Qin
    Zhang, Jie
    Moioli, Emanuele
    Zhao, Kun
    Zuettel, Andreas
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2020, 273 (273):
  • [6] Importance of Ag-Cu Biphasic Boundaries for Selective Electrochemical Reduction of CO2 to Ethanol
    Lee, Seunghwa
    Park, Gibeom
    Lee, Jaeyoung
    ACS CATALYSIS, 2017, 7 (12): : 8594 - 8604
  • [7] Highly Selective Methane Production Through Electrochemical CO2 reduction by Electrolytically Plated Cu-Co Electrode
    Takatsuji, Yoshiyuki
    Nakata, Ikumi
    Morimoto, Masayuki
    Sakakura, Tatsuya
    Yamasaki, Ryota
    Haruyama, Tetsuya
    ELECTROCATALYSIS, 2019, 10 (01) : 29 - 34
  • [8] Further Study of CO2 Electrochemical Reduction on Palladium Modified BDD Electrode: Influence of Electrolyte
    Jiwanti, Prastika Krisma
    Einaga, Yasuaki
    CHEMISTRY-AN ASIAN JOURNAL, 2020, 15 (06) : 910 - 914
  • [9] High-density Ag nanosheets for selective electrochemical CO2 reduction to CO
    Yan, Shenglin
    Chen, Chengzhen
    Zhang, Fanghua
    Mahyoub, Samah A.
    Cheng, Zhenmin
    NANOTECHNOLOGY, 2021, 32 (16)
  • [10] Efficient photoelectrocatalytic CO2 reduction by cobalt complexes at silicon electrode
    Chen, Liangfeng
    Wang, Zhuo
    Kang, Peng
    CHINESE JOURNAL OF CATALYSIS, 2018, 39 (03) : 413 - 420