Super-resolution Reflection Microscopy via Absorbance Modulation

被引:1
作者
Jain, Parul [1 ]
Geisler, Claudia [1 ]
Leitz, Dennis [2 ]
Udachin, Viktor [3 ]
Nagorny, Sven [4 ]
Weingartz, Thea [4 ]
Adams, Jorg [5 ]
Schmidt, Andreas [4 ]
Rembe, Christian [2 ]
Egner, Alexander [1 ]
机构
[1] Inst Nanophoton Gottingen eV, Dept Opt Nanoscopy, D-37077 Gottingen, Germany
[2] Tech Univ Clausthal, Inst Elect Informat Technol, D-38678 Clausthal Zellerfeld, Germany
[3] Tech Univ Clausthal, Clausthal Ctr Mat Technol, D-38678 Clausthal Zellerfeld, Germany
[4] Tech Univ Clausthal, Inst Organ Chem, D-38678 Clausthal Zellerfeld, Germany
[5] Tech Univ Clausthal, Inst Phys Chem, D-38678 Clausthal Zellerfeld, Germany
来源
ACS NANOSCIENCE AU | 2023年 / 3卷 / 05期
关键词
Nanoscopy; super-resolution; reflectionmicroscopy; absorbance modulation imaging (AMI); absorbance modulationlayer (AML); RESOLUTION; LIGHT;
D O I
10.1021/acsnanoscienceau.3c00013
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In recent years, fluorescence microscopy has been revolutionized. Reversible switching of fluorophores has enabled circumventing the limits imposed by diffraction. Thus, resolution down to the molecular scale became possible. However, to the best of our knowledge, the application of the principles underlying super-resolution fluorescence microscopy to reflection microscopy has not been experimentally demonstrated. Here, we present the first evidence that this is indeed possible. A layer of photochromic molecules referred to as the absorbance modulation layer (AML) is applied to a sample under investigation. The AML-coated sample is then sequentially illuminated with a one-dimensional (1D) focal intensity distribution (similar to the transverse laser mode TEM01) at wavelength lambda(1) = 325 nm to create a subwavelength aperture within the AML, followed by illumination with a Gaussian focal spot at lambda(2) = 633 nm for high-resolution imaging. Using this method, called absorbance modulation imaging (AMI) in reflection, we demonstrate a 2.4-fold resolution enhancement over the diffraction limit for a numerical aperture (NA) of 0.65 and wavelength (lambda) of 633 nm.
引用
收藏
页码:375 / 380
页数:6
相关论文
共 50 条
[41]   Test Samples for Optimizing STORM Super-Resolution Microscopy [J].
Metcalf, Daniel J. ;
Edwards, Rebecca ;
Kumarswami, Neelam ;
Knight, Alex E. .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2013, (79)
[42]   Toward Label-Free Super-Resolution Microscopy [J].
Silva, W. Ruchira ;
Graefe, Christian T. ;
Frontiera, Renee R. .
ACS PHOTONICS, 2016, 3 (01) :79-86
[43]   Super-Resolution Microscopy: Going Live and Going Fast [J].
Lakadamyali, Melike .
CHEMPHYSCHEM, 2014, 15 (04) :630-636
[44]   Imaging Principles and Applications of Super-Resolution Optical Microscopy [J].
Fu Yun ;
Wang Tianle ;
Zhao Sen .
LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (24)
[45]   Super-resolution photoacoustic microscopy using joint sparsity [J].
Burgholzer, P. ;
Haltmeier, M. ;
Berer, T. ;
Leiss-Holzinger, E. ;
Murray, T. W. .
OPTO-ACOUSTIC METHODS AND APPLICATIONS IN BIOPHOTONICS III, 2017, 10415
[46]   In vivo super-resolution RESOLFT microscopy of Drosophila melanogaster [J].
Schnorrenberg, Sebastian ;
Grotjohann, Tim ;
Vorbrueggen, Gerd ;
Herzig, Alf ;
Hell, Stefan W. ;
Jakobs, Stefan .
ELIFE, 2016, 5
[47]   Nanoscale imaging of biological systems via expansion and super-resolution microscopy [J].
Aristova, Daria ;
Kylies, Dominik ;
Del Rosario, Mario ;
Heil, Hannah S. ;
Schwerk, Maria ;
Kuehl, Malte ;
Wong, Milagros N. ;
Henriques, Ricardo ;
Puelles, Victor G. .
APPLIED PHYSICS REVIEWS, 2025, 12 (02)
[48]   Image Super-Resolution Via Sparse Embedding [J].
Zhu, Qidan ;
Sun, Lei ;
Cai, Chengtao .
2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, :5673-5676
[49]   Expansion microscopy: A chemical approach for super-resolution microscopy [J].
Zhuang, Yinyin ;
Shi, Xiaoyu .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2023, 81
[50]   Resolution and super-resolution [J].
Sheppard, Colin J. R. .
MICROSCOPY RESEARCH AND TECHNIQUE, 2017, 80 (06) :590-598