Comparative Analysis of n- and p-Type Ferroelectric Tunnel Junctions Through Understanding of Non-FE Resistance Switching

被引:9
作者
Koo, Ryun-Han [1 ,2 ]
Shin, Wonjun [1 ,2 ]
Ryu, Sangwoo [1 ,2 ]
Lee, Kyungmin [1 ,2 ]
Park, Sung-Ho [1 ,2 ]
Im, Jiseong [1 ,2 ]
Ko, Jong-Hyun [1 ,2 ]
Kim, Jeong-Hyun [1 ,2 ]
Kwon, Dongseok [1 ,2 ]
Kim, Jae-Joon [1 ,2 ]
Kwon, Daewoong [1 ,2 ,3 ]
Lee, Jong-Ho [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Elect & Comp Engn, Seoul 08826, South Korea
[2] Seoul Natl Univ, Interuniv Semicond Res Ctr ISRC, Seoul 08826, South Korea
[3] Hanyang Univ, Dept Elect Engn, Seoul 04763, South Korea
关键词
Ferroelectric tunnel junction (FTJ); hafnium zirconium oxide (HfZrO); p-type Si; fatigue mechanisms; ELECTRORESISTANCE; TRANSISTORS; MECHANISMS; CONDUCTION; FILMS;
D O I
10.1109/LED.2023.3305602
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We re-evaluate the performance of the p -type ferroelectric tunnel junction (FTJ(p)) by introducing a perspective that includes non-ferroelectric (FE) resistive switching (RS). Contrary to the previous studies that FTJ(p) exhibits significantly lower on-current density (J(on)) compared to the n -type FTJ (FTJ(n)) , our observations show that FTJ(p) exhibits comparable J(on) to FTJ(n), thus achieving a higher tunneling electroresistance (TER) ratio. By analyzing low-frequency noise and temperature dependence of the fatigue rate, we demonstrate that the non-FE RS causes the increase in the J(on) and TER ratio of FTJ(p). Furthermore, we discover a new advantage of FTJ(p): It exhibits lower read noise than FTJ(n) in the operating region governed by the FE RS.
引用
收藏
页码:1624 / 1627
页数:4
相关论文
共 2 条
  • [1] Conduction Mechanisms of Metal-Ferroelectric- Insulator-Semiconductor Tunnel Junction on N- and P-Type Semiconductor
    Chang, Pengying
    Du, Gang
    Kang, Jinfeng
    Liu, Xiaoyan
    IEEE ELECTRON DEVICE LETTERS, 2021, 42 (01) : 118 - 121
  • [2] Cu-ion-induced n- to p-type switching in organic thermoelectric polyazacycloalkane/carbon nanotubes
    Hata, Shinichi
    Nakata, Riku
    Yasuda, Soichiro
    Ihara, Hiroki
    Du, Yukou
    Shiraishi, Yukihide
    Toshima, Naoki
    MATERIALS ADVANCES, 2022, 3 (01): : 373 - 380