Bergman Kernel, Szego Kernel and Dirichlet Integral

被引:0
作者
Yamada, Akira [1 ]
机构
[1] Tokyo Gakugei Univ, Dept Math, Tokyo, Japan
关键词
Reproducing kernel; Bergman kernel; Szego kernel; Integral transformation; Planar regular region;
D O I
10.1007/s11785-023-01409-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
D. A. Hejhal showed the positive definiteness of the matrix H = (h(jk)) appearing in Schiffer's identity K-B = 4 pi K-S(2) + Sigma (j,k) h (jk) v j (v(k)) over bar, where K-B and K-S are, respectively, the Bergman and the Szego kernel on a planar regular region. We give several conditions equivalent to Hejhal's theorem by means of an integral transform whose kernel is the product of two Szego kernels. In particular, we show that the positive definiteness of thematrix H follows from the contractivity of the above integral transform together with the equality condition fornorms.
引用
收藏
页数:13
相关论文
共 15 条
[11]  
SAITOH S, 1981, PAC J MATH, V96, P489, DOI 10.2140/pjm.1981.96.489
[12]   EXACT BERGMAN KERNEL AND KERNELS OF SZEGO TYPE [J].
SAITOH, S .
PACIFIC JOURNAL OF MATHEMATICS, 1977, 71 (02) :545-557
[13]  
Saitoh S., 1988, THEORY REPRODUCING K
[14]  
Saitoh S., 1997, Pitman Research Notes in Mathematics Series
[15]   VARIOUS TYPES OF ORTHOGONALIZATION [J].
SCHIFFER, M .
DUKE MATHEMATICAL JOURNAL, 1950, 17 (04) :329-366