On the Well-Posedness and Stability of Cubic and Quintic Nonlinear Schródinger Systems on T3

被引:0
作者
Chen, Thomas [1 ]
Urban, Amie Bowles [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
来源
ANNALES HENRI POINCARE | 2024年 / 25卷 / 02期
关键词
SCHRODINGER-EQUATION; STATIONARY STATES; EXISTENCE; INEQUALITIES; NLS;
D O I
10.1007/s00023-023-01371-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study cubic and quintic nonlinear Schrodinger systems on three-dimensional tori, with initial data in an adapted Hilbert space H-lambda(s) , and all of our results hold on rational and irrational rectangular, flat tori. In the cubic and quintic case, we prove local well-posedness for both focusing and defocusing systems. We show that local solutions of the defocusing cubic system with initial data in H-lambda(1) can be extended for all time. Additionally, we prove that global well-posedness holds in the quintic system, focusing or defocusing, for initial data with sufficiently small H-lambda(1) norm. Finally, we use the energy-Casimir method to prove the existence and uniqueness, and nonlinear stability of a class of stationary states of the defocusing cubic and quintic nonlinear Schrodinger systems.
引用
收藏
页码:1657 / 1692
页数:36
相关论文
共 50 条
[21]   Bright soliton dynamics for resonant nonlinear Schrödinger equation with generalized cubic-quintic nonlinearity [J].
Bao, Keyu ;
Tang, Xiaogang ;
Wang, Ying .
CHINESE PHYSICS B, 2024, 33 (12)
[22]   Global well-posedness for the higher order non-linear Schrödinger equation in modulation spaces [J].
Carvajal, X. ;
Gamboa, P. ;
Santos, R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (02)
[23]   Global well-posedness and scattering in weighted space for nonlinear Schrödinger equations below the Strauss exponent without gauge-invariance [J].
Kawamoto, Masaki ;
Masaki, Satoshi ;
Miyazaki, Hayato .
MATHEMATISCHE ANNALEN, 2025, 392 (01) :1051-1097
[24]   GLOBAL WELL-POSEDNESS OF THE GROSS-PITAEVSKII AND CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATIONS WITH NON-VANISHING BOUNDARY CONDITIONS [J].
Killip, Rowan ;
Oh, Tadahiro ;
Pocovnicu, Oana ;
Visan, Monica .
MATHEMATICAL RESEARCH LETTERS, 2012, 19 (05) :969-986
[25]   Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation [J].
Bulut, Aynur .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (06) :1609-1660
[26]   Planar Schrödinger-Poisson system with exponential critical growth: Local well-posedness and standing waves with prescribed mass [J].
Sun, Juntao ;
Yao, Shuai ;
Zhang, Jian .
STUDIES IN APPLIED MATHEMATICS, 2024, 153 (04)
[27]   ON THE GROWTH OF HIGH SOBOLEV NORMS OF THE CUBIC NONLINEAR SCHRÖDINGER EQUATION ON R x T [J].
Deng, Mingming ;
Yang, Kailong .
DIFFERENTIAL AND INTEGRAL EQUATIONS, 2024, 37 (5-6) :337-358
[28]   Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on R3 [J].
Oh, Tadahiro ;
Pocovnicu, Oana .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 105 (03) :342-366
[29]   Almost sure well-posedness for the periodic 3D quintic nonlinear Schrodinger equation below the energy space [J].
Nahmod, Andrea R. ;
Staffilani, Gigliola .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (07) :1687-1759
[30]   A finite difference scheme for (2+1)D cubic-quintic nonlinear Schrödinger equations with nonlinear damping [J].
Ha Le, Anh ;
Huynh, Toan T. ;
Nguyen, Quan M. .
APPLIED NUMERICAL MATHEMATICS, 2024, 205 :215-239