Improvement of melting performance in a longitudinal finned latent heat thermal energy storage unit

被引:10
作者
Laasri, Imad Ait [1 ,2 ]
Elmaazouzi, Zakaria [2 ,3 ]
El Alami, Mustapha [3 ]
Outzourhit, Abdelkader [1 ]
Bennouna, El Ghali [2 ]
机构
[1] Cadi Ayyad Univ, Fac Sci Semlalia, Lab LaMEE, Marrakech, Morocco
[2] Green Energy Pk UM6P IRESEN, Ben Guerir, Morocco
[3] Hassan II Univ Casablanca, Fac Sci, Lab LPMMAT, Casablanca, Morocco
关键词
finned double-pipe heat exchangers; latent heat storage (LHS); phase change material (PCM); solar energy; thermal energy storage (TES); PHASE-CHANGE MATERIALS; PCM; SYSTEM; SHELL; PARAFFIN; MIXTURE;
D O I
10.1002/est2.510
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This article presents an analysis and enhancement of the charging behavior of a double-pipe LHTES unit with longitudinal fins for concentrated solar power applications using a finite element numerical analysis approach. The finite element approach is applied to this numerical analysis by using "COMSOL Multiphysics" software. The investigated LHTES system has an operating temperature range of 180 degrees C-300 degrees C and uses "DelcoTerm Solar E 15" as the heat transfer fluid (HTF) with a eutectic inorganic mixture of sodium nitrite and sodium nitrate as the phase change material (PCM). While also taking into account the impact of the tube material and the number of fins, the primary goal of this study is to evaluate performance improvement by changing the thickness and number of fins in a linked manner without changing the storage unit capacity. The results show a maximal impact on thermal performance which decreased the melting time by 46% and the charging time by 49.6% for the configuration with a fin thickness of 1 mm, 27 longitudinal fins, an inner tube made of aluminum, and a mass flow rate of 60 kg/h.
引用
收藏
页数:22
相关论文
共 63 条
  • [1] Melting effect in triplex-tube thermal energy storage system using multiple PCMs-porous metal foam combination
    Abandani, Mohammadreza Hassani Soukht
    Ganji, Davoud Domiri
    [J]. JOURNAL OF ENERGY STORAGE, 2021, 43
  • [2] LOW-TEMPERATURE LATENT-HEAT THERMAL-ENERGY STORAGE - HEAT-STORAGE MATERIALS
    ABHAT, A
    [J]. SOLAR ENERGY, 1983, 30 (04) : 313 - 332
  • [3] An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material
    Agarwal, Ashish
    Sarviya, R. M.
    [J]. ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2016, 19 (01): : 619 - 631
  • [4] A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins
    Agyenim, Francis
    Eames, Philip
    Smyth, Mervyn
    [J]. SOLAR ENERGY, 2009, 83 (09) : 1509 - 1520
  • [5] Ait Laasri I., NUMERICAL STUDY LATE
  • [6] Ait Laasri I., 2022, 2022 13 INT REN EN C, DOI [10.1109/IREC56325.2022.10002008, DOI 10.1109/IREC56325.2022.10002008]
  • [7] The effect of localized dynamic surface preheating in laser cladding of Stellite 1
    Alimardani, Masoud
    Fallah, Vahid
    Khajepour, Amir
    Toyserkani, Ehsan
    [J]. SURFACE & COATINGS TECHNOLOGY, 2010, 204 (23) : 3911 - 3919
  • [8] Phase change materials and carbon nanostructures for thermal energy storage: A literature review
    Amaral, C.
    Vicente, R.
    Marques, P. A. A. P.
    Barros-Timmons, A.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 79 : 1212 - 1228
  • [9] [Anonymous], 2010, World Energy Outlook 2010
  • [10] AZO Materials, STAINL STEEL GRAD 30