ZIF-derived porous carbon supported cobalt and selenium dual sites enhanced oxygen reduction reaction

被引:13
作者
Lian, Jie [1 ]
Zhao, Jinyu [1 ]
Wang, Xiaomin [1 ]
Bai, Qiang [1 ]
机构
[1] Taiyuan Univ Technol, Coll Mat Sci & Engn, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-noble metal catalyst; Dual sites; Oxygen reduction reaction; Proton exchange membrane fuel cell; EFFICIENT; ELECTROCATALYSTS; PERFORMANCE;
D O I
10.1016/j.carbon.2023.118257
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Non-noble metal based oxygen-reduction electrocatalysts with high performance in acidic medium are of great importance to application of proton exchange membrane fuel cells (PEMFCs). Dual-sites catalysts with rational design are essential to promote the sluggish kinetics of oxygen reduction reactions (ORR) owing to the synergistic effect. However, the study of dual sites is mainly based on metal atom pairs and need further mechanism exploration for guiding the reasonable design. Herein, a novel designed dual-sites electrocatalyst with high dispersed Co-Nx and Se-C dual sites embedded in ZIF-derived porous carbon frameworks was successfully synthesized, which displayed a positive ORR activity with a half-wave potential of 0.764 V (vs. RHE) as well as a high stability in 0.5 M H2SO4. Besides, the prepared Co-Se-N-C-2 sample exhibited a high ORR activity with a peak power density of 297 mW cm-2 and a low charge-transfer resistant of 0.326 & omega; when this catalyst was employed in the H2/O2 fuel cell test. Furthermore, experimental characterizations and theoretical calculations revealed that the constructed Co/Se dual sites had multiple effects. In addition to providing additional active sites, the introduction of Se can effectively modulate the charge redistribution, enhance the efficiency of charge transfer, and reduce the energy barrier of the desorption process of the ORR pathway. These multiple effects promote the ORR kinetics and improve the catalytic performance.
引用
收藏
页数:8
相关论文
共 51 条
[1]   Iron-Nitrogen-Carbon Catalysts for Proton Exchange Membrane Fuel Cells [J].
Asset, Tristan ;
Atanassov, Plamen .
JOULE, 2020, 4 (01) :33-44
[2]   pH Effect on the H2O2-Induced Deactivation of Fe-N-C Catalysts [J].
Bae, Geunsu ;
Chung, Min Wook ;
Ji, Sang Gu ;
Jaouen, Frederic ;
Choi, Chang Hyuck .
ACS CATALYSIS, 2020, 10 (15) :8485-8495
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Vicinal Co atom-coordinated Fe-N-C catalysts to boost the oxygen reduction reaction [J].
Chen, Yu-bin ;
Li, Jie-jie ;
Zhu, Yan-ping ;
Zou, Jian ;
Zhao, Hao ;
Chen, Chi ;
Cheng, Qing-qing ;
Yang, Bo ;
Zou, Liang-liang ;
Zou, Zhi-qing ;
Yang, Hui .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (18) :9886-9891
[5]   Boosting oxygen reduction reaction with Fe and Se dual-atom sites supported by nitrogen-doped porous carbon [J].
Chen, Zhaoyang ;
Su, Xiaozhi ;
Ding, Jie ;
Yang, Na ;
Zuo, Wenbin ;
He, Qinye ;
Wei, Zhiming ;
Zhang, Qiao ;
Huang, Jian ;
Zhai, Yueming .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 308
[6]   Enhanced performance of atomically dispersed dual-site Fe-Mn electrocatalysts through cascade reaction mechanism [J].
Chen, Zhe ;
Liao, Xiaobin ;
Sun, Congli ;
Zhao, Kangning ;
Ye, Daixin ;
Li, Jiantao ;
Wu, Gang ;
Fang, Jianhui ;
Zhao, Hongbin ;
Zhang, Jiujun .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 288
[7]  
Choi C.H., ENERG ENVIRON-UK
[8]   Minimizing Operando Demetallation of Fe-N-C Electrocatalysts in Acidic Medium [J].
Choi, Chang Hyuck ;
Baldizzone, Claudio ;
Polymeros, George ;
Pizzutilo, Enrico ;
Kasian, Olga ;
Schuppert, Anna K. ;
Sahraie, Nastaran Ranjbar ;
Sougrati, Moulay-Tahar ;
Mayrhofer, Karl J. J. ;
Jaouen, Frederic .
ACS CATALYSIS, 2016, 6 (05) :3136-3146
[9]   Advanced Atomically Dispersed Metal-Nitrogen-Carbon Catalysts Toward Cathodic Oxygen Reduction in PEM Fuel Cells [J].
Deng, Yijie ;
Luo, Junming ;
Chi, Bin ;
Tang, Haibo ;
Li, Jing ;
Qiao, Xiaochang ;
Shen, Yijun ;
Yang, Yingjie ;
Jia, Chunman ;
Rao, Peng ;
Liao, Shijun ;
Tian, Xinlong .
ADVANCED ENERGY MATERIALS, 2021, 11 (37)
[10]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509