Dynamics of Fractional Delayed Reaction-Diffusion Equations

被引:1
|
作者
Liu, Linfang [1 ]
Nieto, Juan J. [2 ]
机构
[1] Northwest Univ, Dept Math, Xian 710127, Peoples R China
[2] Univ Santiago Compostela, Dept Analise Matemat Estat & Optimizac, Santiago De Compostela 15782, Spain
关键词
fractional reaction-diffusion equations; bounded variable delay; generalized fractional derivative; generalized comparison principal; global attracting sets; DIFFERENTIAL-EQUATIONS; CAPUTO-TYPE; DISSIPATIVITY; INEQUALITIES; DERIVATIVES;
D O I
10.3390/e25060950
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The long-term behavior of the weak solution of a fractional delayed reaction-diffusion equation with a generalized Caputo derivative is investigated. By using the classic Galerkin approximation method and comparison principal, the existence and uniqueness of the solution is proved in the sense of weak solution. In addition, the global attracting set of the considered system is obtained, with the help of the Sobolev embedding theorem and Halanay inequality.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Fractional reaction-diffusion equations
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    ASTROPHYSICS AND SPACE SCIENCE, 2006, 305 (03) : 289 - 296
  • [2] Fractional Reaction-Diffusion Equations
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    Astrophysics and Space Science, 2006, 305 : 289 - 296
  • [3] Global dynamics of delayed reaction-diffusion equations in unbounded domains
    Yi, Taishan
    Chen, Yuming
    Wu, Jianhong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (05): : 793 - 812
  • [4] ON THE SOLUTIONS OF FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Singh, Jagdev
    Kumar, Devendra
    Rathore, Sushila
    MATEMATICHE, 2013, 68 (01): : 23 - 32
  • [5] Entire solutions of delayed reaction-diffusion equations
    Lv, Guangying
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2012, 92 (03): : 204 - 216
  • [6] On the Steady Solutions of Fractional Reaction-Diffusion Equations
    Fazli, Hossein
    Bahrami, Fariba
    FILOMAT, 2017, 31 (06) : 1655 - 1664
  • [7] On the Speed of Spread for Fractional Reaction-Diffusion Equations
    Engler, Hans
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 2010
  • [8] Numerical solutions for fractional reaction-diffusion equations
    Baeumer, Boris
    Kovacs, Mihaly
    Meerschaert, Mark M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (10) : 2212 - 2226
  • [9] Solution of Generalized Fractional Reaction-Diffusion Equations
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    Astrophysics and Space Science, 2006, 305 (3)
  • [10] Random dynamics of fractional stochastic reaction-diffusion equations on Rn without uniqueness
    Li, Dingshi
    Wang, Bixiang
    Wang, Xiaohu
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (07)