Discontinuous Galerkin Methods for Hemivariational Inequalities in Contact Mechanics

被引:0
作者
Wang, Fei [1 ]
Shah, Sheheryar [1 ]
Wu, Bangmin [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Discontinuous Galerkin methods; Hemivariational inequalities; Contact problems; Non-monotonicity; Error analysis; INTERIOR PENALTY METHOD; FRICTIONAL CONTACT; NUMERICAL-ANALYSIS;
D O I
10.1007/s10915-023-02212-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study discontinuous Galerkin (DG) methods for solving two contact problems. The first problem involves a frictionless normal compliance contact boundary condition, and the second is a bilateral contact problem with friction. These contact problems are modeled by hemivariational inequalities, which consist of non-convex and non-smooth terms. We apply five DG methods to solve the contact problems and establish a priori error estimates for these methods. We prove that the DG schemes achieve optimal convergence order for linear elements. Two examples are presented for numerical evidence of the theoretically predicted convergence order.
引用
收藏
页数:17
相关论文
共 50 条
[1]  
[Anonymous], 2000, LECT NOTES COMP SCI
[2]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[3]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[4]   ANALYSIS OF A CONTACT PROBLEM WITH NORMAL COMPLIANCE, FINITE PENETRATION AND NONMONOTONE SLIP DEPENDENT FRICTION [J].
Barboteu, Mikaeel ;
Bartosz, Krzysztof ;
Kalita, Piotr ;
Ramadan, Ahmad .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (01)
[5]   NUMERICAL ANALYSIS OF A HYPERBOLIC HEMIVARIATIONAL INEQUALITY ARISING IN DYNAMIC CONTACT [J].
Barboteu, Mikael ;
Bartosz, Krzysztof ;
Han, Weimin ;
Janiczko, Tomasz .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) :527-550
[6]   AN ANALYTICAL AND NUMERICAL APPROACH TO A BILATERAL CONTACT PROBLEM WITH NONMONOTONE FRICTION [J].
Barboteu, Mikael ;
Bartosz, Krzysztof ;
Kalita, Piotr .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2013, 23 (02) :263-276
[7]  
Bassi F., 1997, 2 EUROPEAN C TURBOMA, P99
[8]  
Brenner S. C., 2008, The Mathematical Theory of Finite Element Methods, Volume 15 of Texts in Applied Mathematics, DOI [10.1007/978-0-387-75934-0, DOI 10.1007/978-0-387-75934-0]
[9]   A QUADRATIC C0 INTERIOR PENALTY METHOD FOR THE DISPLACEMENT OBSTACLE PROBLEM OF CLAMPED KIRCHHOFF PLATES [J].
Brenner, Susanne C. ;
Sung, Li-Yeng ;
Zhang, Hongchao ;
Zhang, Yi .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (06) :3329-3350
[10]  
Brezzi F., 1997, ATT CONV ON F BRIOSC, P197