机构:
MTA BME Lendulet Quantum Informat Theory Res Grp, H-1111 Budapest, Hungary
Budapest Univ Technol & Econ, Inst Math, Dept Anal, H-1111 Budapest, HungaryMTA BME Lendulet Quantum Informat Theory Res Grp, H-1111 Budapest, Hungary
Mosonyi, Milan
[1
,2
]
Hiai, Fumio
论文数: 0引用数: 0
h-index: 0
机构:
Tohoku Univ, Grad Sch Informat Sci, Sendai 9808579, JapanMTA BME Lendulet Quantum Informat Theory Res Grp, H-1111 Budapest, Hungary
Hiai, Fumio
[3
]
机构:
[1] MTA BME Lendulet Quantum Informat Theory Res Grp, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Inst Math, Dept Anal, H-1111 Budapest, Hungary
[3] Tohoku Univ, Grad Sch Informat Sci, Sendai 9808579, Japan
One possibility of defining a quantum Renyi a-divergence of two quantum states is to optimize the classical Renyi a-divergence of their post-measurement probability distributions over all possible measurements (measured Renyi divergence), and maybe regularize these quantities over multiple copies of the two states (regularized measured Renyi a-divergence). A key observation behind the theorem for the strong converse exponent of asymptotic binary quantum state discrimination is that the regularized measured Renyi a-divergence coincides with the sandwiched Renyi a-divergence when a > 1. Moreover, it also follows from the same theorem that to achieve this, it is sufficient to consider 2-outcome measurements (tests) for any number of copies (this is somewhat surprising, as achieving the measured Renyi a-divergence for n copies might require a number of measurement outcomes that diverges in n, in general). In view of this, it seems natural to expect the same when a < 1; however, we show that this is not the case. In fact, we show that even for commuting states (classical case) the regularized quantity attainable using 2-outcome measurements is in general strictly smaller than the Renyi a-divergence (which is unique in the classical case). In the general quantum case this shows that the above "regularized test-measured" Renyi a-divergence is not even a quantum extension of the classical Renyi divergence when a < 1, in sharp contrast to the a > 1 case.
机构:
Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
Royal Holloway Univ London, Dept Math, Egham TW20 0EX, Surrey, EnglandUniv London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
Audenaert, K. M. R.
Nussbaum, M.
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Math, Ithaca, NY 14853 USAUniv London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
Nussbaum, M.
Szkola, A.
论文数: 0引用数: 0
h-index: 0
机构:
Max Planck Inst Math Sci, D-04103 Leipzig, GermanyUniv London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
Szkola, A.
Verstraete, F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Vienna, Fak Phys, A-1090 Vienna, AustriaUniv London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
机构:
Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
Royal Holloway Univ London, Dept Math, Egham TW20 0EX, Surrey, EnglandUniv London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
Audenaert, K. M. R.
Nussbaum, M.
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Math, Ithaca, NY 14853 USAUniv London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
Nussbaum, M.
Szkola, A.
论文数: 0引用数: 0
h-index: 0
机构:
Max Planck Inst Math Sci, D-04103 Leipzig, GermanyUniv London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
Szkola, A.
Verstraete, F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Vienna, Fak Phys, A-1090 Vienna, AustriaUniv London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England