Extended Lagrangian approach for the numerical study of multidimensional dispersive waves: Applications to the Serre-Green-Naghdi equations

被引:7
作者
Tkachenko, Sergey [1 ]
Gavrilyuk, Sergey [2 ]
Massoni, Jacques [2 ]
机构
[1] Univ Bordeaux, INRIA, CNRS, Bordeaux INP,IMB,UMR5251, 200 Ave Vieille Tour, F-33405 Talence, France
[2] Aix Marseille Univ, CNRS, UMR IUSTI 7343, 5 Rue Enrico Fermi, F-13453 Marseille, France
关键词
Dispersive shallow water equations; Bubbly fluids; Euler-Lagrange equations; Hyperbolic conservation laws; Multidimensional waves; Implicit -explicit numerical methods; SHALLOW-WATER; SHOCK-WAVES; TRANSITION; FLOW; APPROXIMATION; PROPAGATION; DERIVATION; MODELS;
D O I
10.1016/j.jcp.2022.111901
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we study two multidimensional nonlinear dispersive systems: the Serre-Green-Naghdi (SGN) equations describing dispersive shallow water flows, and the Iordan-skii-Kogarko-Wijngaarden (IKW) equations describing fluids containing small compressible gas bubbles. These models are Euler-Lagrange equations for a given Lagrangian and share common mathematical structure, namely the dependence of the pressure on material derivatives of macroscopic variables. We develop a generic dispersive model such that SGN and IKW systems become its special cases if only one specifies the appropriate Lagrangian, and then use the extended Lagragian approach proposed in Favrie and Gavrilyuk (2017) to build its hyperbolic approximation. The new approximate model is unconditionally hyper-bolic for both SGN and IKW cases, and accurately describes dispersive phenomena, which allows to impose discontinuous initial data and study dispersive shock waves. We consider the 2-D hyperbolic version of SGN system as an example for numerical simulations and apply a second order implicit-explicit scheme in order to numerically integrate the system. The obtained 1-D and 2-D results are in close agreement with available exact solutions and numerical tests.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 55 条
  • [1] IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS
    ASCHER, UM
    RUUTH, SJ
    WETTON, BTR
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) : 797 - 823
  • [2] Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations
    Ascher, UM
    Ruuth, SJ
    Spiteri, RJ
    [J]. APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) : 151 - 167
  • [3] VARIATIONAL THEORY OF IMMISCIBLE MIXTURES
    BEDFORD, A
    DRUMHELLER, DS
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1978, 68 (01) : 37 - 51
  • [4] Berdichevsky VL, 2009, INTERACT MECH MATH, P3, DOI 10.1007/978-3-540-88467-5_1
  • [5] Recent advances in Serre-Green Naghdi modelling for wave transformation, breaking and runup processes
    Bonneton, P.
    Barthelemy, E.
    Chazel, F.
    Cienfuegos, R.
    Lannes, D.
    Marche, F.
    Tissier, M.
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2011, 30 (06) : 589 - 597
  • [6] A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model
    Bonneton, P.
    Chazel, F.
    Lannes, D.
    Marche, F.
    Tissier, M.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (04) : 1479 - 1498
  • [7] On High Order ADER Discontinuous Galerkin Schemes for First Order Hyperbolic Reformulations of Nonlinear Dispersive Systems
    Busto, Saray
    Dumbser, Michael
    Escalante, Cipriano
    Favrie, Nicolas
    Gavrilyuk, Sergey
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (02)
  • [8] Numerical Simulation of Strongly Nonlinear and Dispersive Waves Using a Green-Naghdi Model
    Chazel, F.
    Lannes, D.
    Marche, F.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2011, 48 (1-3) : 105 - 116
  • [9] MULTIDIMENSIONAL UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS
    COLELLA, P
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 87 (01) : 171 - 200
  • [10] The structure of steady shock waves in porous metals
    Czarnota, Christophe
    Molinari, Alain
    Mercier, Sebastien
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2017, 107 : 204 - 228