Large blocking sets in PG(2, q2)

被引:0
作者
Szonyi, Tamas [1 ,2 ]
Weiner, Zsuzsa [3 ,4 ]
机构
[1] Eotvos Lorand Univ, Dept Comp Sci & MTA ELTE Geometr, Algebra Combinator Res Grp, Pazmany Peter setany 1 C, H-1117 Budapest, Hungary
[2] Univ Primorska, FAMNIT, Glagoljaska 8, Koper 6000, Slovenia
[3] MTA ELTE Geometr & Algebra Combinator Res Grp, Pazmany Peter setany 1 C, H-1117 Budapest, Hungary
[4] Prezi Inc, Nagymezoutca 54-56, H-1065 Budapest, Hungary
关键词
Finite plane; Unital; Blocking set;
D O I
10.1016/j.ffa.2022.102152
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Minimal blocking sets in PG(2, q2) have size at most q3 + 1. This result is due to Bruen and Thas and the bound is sharp, sets attaining this bound are called unitals. In this paper, we show that the second largest minimal blocking sets have size at most q3 + 1 - (p - 3)/2, if q = p, p >= 67, or q = ph, p > 7, h > 1. Our proof also works for sets having at least one tangent at each of its points (that is, for tangency sets).(c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:13
相关论文
共 15 条