A compressed sensing approach to interpolation of fractional Brownian trajectories for a single particle tracking experiment

被引:0
作者
Muszkieta, Monika [1 ]
Janczura, Joanna [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Hugo Steinhaus Ctr, Wyb Wyspanskiego 27, PL-50370 Wroclaw, Poland
关键词
The single particle tracking; Trajectory interpolation; Fractional Brownian motion; Missing data; Compressed sensing; ROBUST UNCERTAINTY PRINCIPLES; THRESHOLDING ALGORITHM; ANOMALOUS DIFFUSION; LATERAL DIFFUSION; SIGNAL RECOVERY; ERRORS;
D O I
10.1016/j.amc.2023.127900
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, assuming that particles undergo the fractional Brownian motion, we pro-pose the interpolation model based on the fact that the spectral density derived for the finite-length realization of this process obeys a power law decay. This allows us to apply the main idea of compressed sensing to reconstruct a given trajectory in the frequency domain. We conduct a simulation study with various trajectory degradation models re-flecting typical limitations found in a single particle tracking experiment. Based on the statistical analysis we show that parameters characterizing the fractional Brownian motion estimated from trajectories interpolated by the proposed method are close to the ones es-timated from the ground truth data.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 35 条
  • [21] Robust single-particle tracking in live-cell time-lapse sequences
    Jaqaman, Khuloud
    Loerke, Dinah
    Mettlen, Marcel
    Kuwata, Hirotaka
    Grinstein, Sergio
    Schmid, Sandra L.
    Danuser, Gaudenz
    [J]. NATURE METHODS, 2008, 5 (08) : 695 - 702
  • [22] Guidelines for the Fitting of Anomalous Diffusion Mean Square Displacement Graphs from Single Particle Tracking Experiments
    Kepten, Eldad
    Weron, Aleksander
    Sikora, Grzegorz
    Burnecki, Krzysztof
    Garini, Yuval
    [J]. PLOS ONE, 2015, 10 (02):
  • [23] Spectral Content of a Single Non-Brownian Trajectory
    Krapf, Diego
    Lukat, Nils
    Marinari, Enzo
    Metzler, Ralf
    Oshanin, Gleb
    Selhuber-Unkel, Christine
    Squarcini, Alessio
    Stadler, Lorenz
    Weiss, Matthias
    Xu, Xinran
    [J]. PHYSICAL REVIEW X, 2019, 9 (01):
  • [24] CONFINED LATERAL DIFFUSION OF MEMBRANE-RECEPTORS AS STUDIED BY SINGLE-PARTICLE TRACKING (NANOVID MICROSCOPY) - EFFECTS OF CALCIUM-INDUCED DIFFERENTIATION IN CULTURED EPITHELIAL-CELLS
    KUSUMI, A
    SAKO, Y
    YAMAMOTO, M
    [J]. BIOPHYSICAL JOURNAL, 1993, 65 (05) : 2021 - 2040
  • [25] Model Comparison and Assessment for Single Particle Tracking in Biological Fluids
    Lysy, Martin
    Pillai, Natesh S.
    Hill, David B.
    Forest, M. Gregory
    Mellnik, John W. R.
    Vasquez, Paula A.
    McKinley, Scott A.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (516) : 1413 - 1426
  • [26] Fractional Brownian Motion Versus the Continuous-Time Random Walk: A Simple Test for Subdiffusive Dynamics
    Magdziarz, Marcin
    Weron, Aleksander
    Burnecki, Krzysztof
    Klafter, Joseph
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (18)
  • [27] A review of progress in single particle tracking: from methods to biophysical insights
    Manzo, Carlo
    Garcia-Parajo, Maria F.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2015, 78 (12)
  • [28] The random walk's guide to anomalous diffusion: a fractional dynamics approach
    Metzler, R
    Klafter, J
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01): : 1 - 77
  • [29] Simulation and tracking of fractional particles motion. From microscopy video to statistical analysis. A Brownian bridge approach
    Muszkieta, Monika
    Janczura, Joanna
    Weron, Aleksander
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 396 (396)
  • [30] Single-particle tracking: connecting the dots
    Saxton, Michael J.
    [J]. NATURE METHODS, 2008, 5 (08) : 671 - 672