On the Approximation by Bivariate Szasz-Jakimovski-Leviatan-Type Operators of Unbounded Sequences of Positive Numbers

被引:4
|
作者
Alotaibi, Abdullah [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Operator Theory & Applicat Res Grp, Jeddah 21589, Saudi Arabia
关键词
bivariate functions; weight function; Dunkl analogue; Appell polynomial; Szasz operator; Szasz-Jakimovski-Levitian operator; Lipschitz function; PARAMETRIC-EXTENSION; DUNKL GENERALIZATION; CONVERGENCE; KOROVKIN;
D O I
10.3390/math11041009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct the bivariate Szasz-Jakimovski-Leviatan-type operators in Dunkl form using the unbounded sequences alpha(n), beta(m) and xi(m) of positive numbers. Then, we obtain the rate of convergence in terms of the weighted modulus of continuity of two variables and weighted approximation theorems for our operators. Moreover, we provide the degree of convergence with the help of bivariate Lipschitz-maximal functions and obtain the direct theorem.
引用
收藏
页数:21
相关论文
共 39 条
  • [1] Approximation by Szasz-Jakimovski-Leviatan-Type Operators via Aid of Appell Polynomials
    Nasiruzzaman, Md
    Aljohani, A. F.
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [2] Generalization of Jakimovski-Leviatan type Szasz operators
    Sucu, Sezgin
    Varma, Serhan
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 977 - 983
  • [3] Approximation by Jakimovski-Leviatan Type Operators on a Complex Domain
    Sucu, Sezgin
    Ibikli, Ertan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (01) : 177 - 188
  • [4] Approximation by Jakimovski–Leviatan Type Operators on a Complex Domain
    Sezgin Sucu
    Ertan Ibikli
    Complex Analysis and Operator Theory, 2014, 8 : 177 - 188
  • [5] Approximation results for Beta Jakimovski-Leviatan type operators via q-analogue
    Nasiruzzaman, Md.
    Tom, Mohammed A. O.
    Serra-Capizzano, Stefano
    Rao, Nadeem
    Ayman-Mursaleen, Mohammad
    FILOMAT, 2023, 37 (24) : 8389 - 8404
  • [6] Approximation of GBS Type q-Jakimovski-Leviatan-Beta Integral Operators in Bogel Space
    Alotaibi, Abdullah
    MATHEMATICS, 2022, 10 (05)
  • [7] Approximation by Jakimovski-Leviatan-beta operators in weighted space
    Nasiruzzaman, M.
    Mursaleen, M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [8] On the Approximation of Szász-Jakimovski-Leviatan Beta Type Integral Operators Enhanced by Appell Polynomials
    Ayman-Mursaleen, Mohammad
    Nasiruzzaman, Md.
    Rao, Nadeem
    IRANIAN JOURNAL OF SCIENCE, 2025,
  • [9] Approximation of Jakimovski-Leviatan-Beta type integral operators via q-calculus
    Alotaibi, Abdullah
    Mursaleen, M.
    AIMS MATHEMATICS, 2020, 5 (04): : 3019 - 3034
  • [10] Approximation properties of (p, q) bivariate Szasz Beta type operators
    Khan, Shuzaat Ali
    Rao, Nadeem
    Khan, Taqseer
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (49): : 382 - 399