Soil microbial legacies influence freeze-thaw responses of soil

被引:8
|
作者
Pastore, Melissa A. [1 ,2 ]
Classen, Aimee T. [2 ,3 ,4 ]
English, Marie E. [1 ]
Frey, Serita D. [5 ]
Knorr, Melissa A. [5 ]
Rand, Karin [1 ]
Adair, E. Carol [1 ,2 ]
机构
[1] Univ Vermont, Rubenstein Sch Environm & Nat Resources, Burlington, VT 05405 USA
[2] Univ Vermont, Gund Inst Environm, Burlington, VT USA
[3] Univ Michigan, Ecol & Evolutionary Biol Dept, Ann Arbor, MI USA
[4] Univ Michigan Biol Stn, Pellston, MI USA
[5] Univ New Hampshire, Dept Nat Resources & Environm, Durham, NH USA
基金
美国国家科学基金会; 美国食品与农业研究所;
关键词
freeze-thaw cycles; legacies; microbial biomass; microbial communities; respiration; soil nitrogen; temperate forest soils; winter climate change; FATTY-ACID PROFILES; ORGANIC-MATTER; CLIMATE-CHANGE; DISSOLVED NITROGEN; CYCLES; COMMUNITIES; BIOMASS; CARBON; COLD; TEMPERATE;
D O I
10.1111/1365-2435.14273
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Warmer winters with less snowfall are increasing the frequency of soil freeze-thaw cycles across temperate regions. Soil microbial responses to freeze-thaw cycles vary and some of this variation may be explained by microbial conditioning to prior winter conditions, yet such linkages remain largely unexplored. We investigated how differences in temperature history influenced microbial community composition and activity in response to freeze-thaw cycles.We collected soil microbial communities that developed under colder (high elevation) and warmer (low elevation) temperature regimes in spruce-fir forests, then added each of these soil microbial communities to a sterile bulk-soil in a laboratory microcosm experiment. The inoculated high-elevation cold and low-elevation warm microcosms were subjected to diurnal freeze-thaw cycles or constant above-freezing temperature for 9 days. Then, all microcosms were subjected to a 7-day above-freezing recovery period.Overall, we found that the high-elevation cold community had, relative to the low-elevation warm community, a smaller reduction in microbial respiration (CO2 flux) during freeze-thaw cycles. Further, the high-elevation cold community, on average, experienced lower freeze-thaw-induced bacterial mortality than the warm community and may have partly acclimated to freeze-thaw cycles via increased lipid membrane fluidity. Respiration of both microbial communities quickly recovered following the end of the freeze-thaw treatment period and there were no changes in soil extractable carbon or nitrogen.Our results provide evidence that past soil temperature conditions may influence the responses of soil microbial communities to freeze-thaw cycles. The microbial community that developed under a colder temperature regime was more tolerant of freeze-thaw cycles than the community that developed under a warmer temperature regime, although both communities displayed some level of resilience. Taken together, our data suggest that microbial communities conditioned to less extreme winter soil temperatures may be most vulnerable to rapid changes in freeze-thaw regimes as winters warm, but they also may be able to quickly recover if mortality is low.
引用
收藏
页码:1055 / 1066
页数:12
相关论文
共 50 条
  • [21] Study on the Physics and Mechanical Properties of freeze-thaw Soil and undisturbed Soil
    Zhao, Guangwei
    Dai, Jinghui
    MECHATRONICS AND INTELLIGENT MATERIALS II, PTS 1-6, 2012, 490-495 : 2752 - 2754
  • [22] Effects of successive soil freeze-thaw cycles on soil microbial biomass and organic matter decomposition potential of soils
    Yanai, Y
    Toyota, K
    Okazaki, M
    SOIL SCIENCE AND PLANT NUTRITION, 2004, 50 (06) : 821 - 829
  • [23] Effects of freeze-thaw stress during soil storage on microbial communities and methidathion degradation
    Pesaro, M
    Widmer, F
    Nicollier, G
    Zeyer, J
    SOIL BIOLOGY & BIOCHEMISTRY, 2003, 35 (08): : 1049 - 1061
  • [24] The influence of freeze-thaw action on loess collapsibility coefficient considering soil structure
    Chou Ya-ling
    Jia Shu-sheng
    Zhang Qing-hai
    Cao Wei
    Sehng Yu
    ROCK AND SOIL MECHANICS, 2018, 39 (08) : 2715 - +
  • [25] Influence of freeze-thaw action on mechanical behavior of saturated crushable volcanic soil
    Ishikawa, T.
    Miura, S.
    Ito, K.
    Ozaki, Y.
    DEFORMATION CHARACTERISTICS OF GEOMATERIALS, VOLS 1 AND 2, 2008, : 557 - +
  • [26] Unidirectional freeze-thaw redistributes water and amplifies soil microbial heterogeneity in a mecrocosm experiment
    Liu, Huimin
    Hu, Yaxian
    Song, Yuan
    Li, Xianwen
    Wei, Xiaorong
    GEODERMA, 2025, 453
  • [27] Seasonal freeze-thaw processes regulate and buffer the distribution of microbial communities in soil horizons
    Zhao, Yun-Duo
    Hu, Xia
    CATENA, 2023, 231
  • [28] Effects of freeze-thaw on soil properties and water erosion
    Sun, Baoyang
    Ren, Feipeng
    Ding, Wenfeng
    Zhang, Guanhua
    Huang, Jinquan
    Li, Jianming
    Zhang, Lei
    SOIL AND WATER RESEARCH, 2021, 16 (04) : 205 - 216
  • [29] CALCULATED AND MEASURED AIR AND SOIL FREEZE-THAW FREQUENCIES
    BAKER, DG
    RUSCHY, DL
    JOURNAL OF APPLIED METEOROLOGY, 1995, 34 (10): : 2197 - 2205
  • [30] Influence of freeze-thaw action on soil water characteristics of crushable volcanic coarse-grained soil
    Ishikawa, T.
    Ito, K.
    Miura, S.
    UNSATURATED SOILS: EXPERIMENTAL STUDIES IN UNSATURATED SOILS AND EXPANSIVE SOILS, 2010, : 159 - 164