Bifurcation analysis and spatiotemporal patterns in delayed Schnakenberg reaction-diffusion model

被引:0
作者
Yang, Rui [1 ]
机构
[1] Shanghai Inst Technol, Coll Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Schnakenberg model; gene expression time delay; periodic solution; Turing instability; Hopf bifurcation; SYMMETRIC STATIONARY SOLUTIONS; HOPF-BIFURCATION; TURING PATTERNS; STABILITY; SYSTEMS; HETEROGENEITY; EXISTENCE; EQUATIONS; SCHEMES; DOMAINS;
D O I
10.1080/00036811.2022.2159391
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The diffusive Schnakenberg model with gene expression time delay is considered. In this paper, the stability, diffusion-driven instability, and time delay-induced Hopf bifurcation have been investigated. By linear stability analysis, we find the parameter areas where the unique positive equilibrium is stable and Turing instability can occur for a certain relationship of diffusion rates. Then we obtain a series of critical values for the time delay at which the spatially homogeneous and inhomogeneous periodic solutions may emerge. Based on the explicit formula determining the properties of the Hopf bifurcation, we employ numerical simulations for parameters both in the stable region and Turing instability region. The numerical simulations show that delay can destabilize the stability of the positive equilibrium solution and eventually induce spatially homogeneous and inhomogeneous periodic solutions. Furthermore, the spatiotemporal patterns in the two spaces dimension from the Turing instability regime provide an indication of the wealth of patterns that the delayed system can exhibit.
引用
收藏
页码:672 / 693
页数:22
相关论文
共 50 条
  • [41] Patterns in a nonlocal time-delayed reaction-diffusion equation
    Guo, Shangjiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (01):
  • [42] Stability Analysis and Hopf Bifurcation for the Brusselator Reaction-Diffusion System with Gene Expression Time Delay
    Alfifi, Hassan Y.
    Almuaddi, Saad M.
    MATHEMATICS, 2024, 12 (08)
  • [43] Spatiotemporal patterns in the Lengyel-Epstein reaction-diffusion model
    Dong, Yaying
    Zhang, Shunli
    Li, Shanbing
    ADVANCES IN DIFFERENCE EQUATIONS, 2016, : 1 - 15
  • [44] Analysis on a generalized Sel'kov-Schnakenberg reaction-diffusion system
    Li, Bo
    Wang, Fangfang
    Zhang, Xiaoyan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 44 : 537 - 558
  • [45] Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect
    Guo, Shangjiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (04) : 1409 - 1448
  • [46] BIFURCATION ANALYSIS OF A DELAYED EPIDEMIC MODEL WITH DIFFUSION
    Xu, Changjin
    Liao, Maoxin
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 26 (02): : 321 - 338
  • [47] Numerical algorithm for a generalized form of Schnakenberg reaction-diffusion model with gene expression time delay
    Omrana, A. K.
    Zaky, M. A.
    Hendy, A. S.
    Pimenova, V. G.
    APPLIED NUMERICAL MATHEMATICS, 2023, 185 : 295 - 310
  • [48] Spatiotemporal dynamics of a general reaction-diffusion model with time delay and nonlocal effect
    Xu, Xiuyan
    Liu, Ming
    Xu, Xiaofeng
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2025, 2025 (01):
  • [49] Bifurcation Analysis of a Reaction-Diffusion Rumor Spreading Model with Nonsmooth Control
    Zhu, Linhe
    Zheng, Wenxin
    Zhang, Xuebing
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (08):
  • [50] Stability and bifurcation analysis of reaction-diffusion neural networks with delays
    Zhao, Hongyong
    Yuan, Jinglan
    Zhang, Xuebing
    NEUROCOMPUTING, 2015, 147 : 280 - 290