Enrofloxacin-induced transfer of multiple-antibiotic resistance genes and emergence of novel resistant bacteria in red swamp crayfish guts and pond sediments

被引:37
作者
Jin, Xuexia [1 ]
Liu, Sizhen [1 ]
Zhang, Zhenting [1 ]
Liu, Tong [1 ]
Li, Na [3 ]
Liang, Yunxiang [1 ,2 ]
Zheng, Jinshui [1 ]
Peng, Nan [1 ]
机构
[1] Huazhong Agr Univ, Coll Life Sci & Technol, State Key Lab Agr Microbiol, Hubei Hongshan Lab, Wuhan 430070, Hubei, Peoples R China
[2] Runge Coll Bioengn, Deyang 618200, Sichuan, Peoples R China
[3] Huazhong Agr Univ, Coll Informat, Hubei Key Lab Agr Bioinformat, Wuhan 430070, Peoples R China
关键词
Antibiotic resistance genes; Mobile genetic elements; Gut and sediment microbiota; Procambarus clarkia; Enrofloxacin; Enterobacteriaceae; QUINOLONE RESISTANCE; PREVALENCE; TOOL; ENVIRONMENT;
D O I
10.1016/j.jhazmat.2022.130261
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Antibiotic resistance genes (ARGs) can be transferred from environmental microbes to human pathogens, thus leading to bacterial infection treatment failures. The aquaculture polluted by over-used antibiotics is considered as a notorious reservoir of ARGs. However, the origin, diachronic changes, and mobility of ARGs under antibiotic exposure in aquaculture systems remain elusive. Our findings showed that enrofloxacin application also increased the relative abundance of various ARGs in addition to quinolone-resistance genes and induced ARG dissemination in crayfish gut and sediment bacteria. Further investigation indicated that the transposase-mediated recombination was the major driver of horizontal gene transfer (HGT) of ARGs under antibiotic stress. Notably, enrofloxacin application also induced the generation of some metagenome-assembled genomes (MAGs) carrying multiple ARGs, which were identified as novel species. Additionally, Enterobacteriaceae constituted a mobile ARG pool in aquaculture. Therefore, aquaculture provides potential wide environmental pathways for generation and spread of antibiotic resistance. Our findings of ARG temporal variations and dissemination pattern in aquaculture with artificial use of antibiotics are critical to the management of antibiotic resistance, which is of great ecosystem and health implications.
引用
收藏
页数:12
相关论文
共 54 条
[1]   Plasmid detection and assembly in genomic and metagenomic data sets [J].
Antipov, Dmitry ;
Raiko, Mikhail ;
Lapidus, Alla ;
Pevzner, Pavel A. .
GENOME RESEARCH, 2019, 29 (06) :961-968
[2]   Transposases are the most abundant, most ubiquitous genes in nature [J].
Aziz, Ramy K. ;
Breitbart, Mya ;
Edwards, Robert A. .
NUCLEIC ACIDS RESEARCH, 2010, 38 (13) :4207-4217
[3]   Antibiotic resistance shaping multi-level population biology of bacteria [J].
Baquero, Fernando ;
Tedim, Ana P. ;
Coque, Teresa M. .
FRONTIERS IN MICROBIOLOGY, 2013, 4
[4]   Association between selected antimicrobial resistance genes and antimicrobial exposure in Danish pig farms [J].
Birkegard, Anna Camilla ;
Halasa, Tariq ;
Grsboll, Kaare ;
Clasen, Julie ;
Folkesson, Anders ;
Toft, Nils .
SCIENTIFIC REPORTS, 2017, 7
[5]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[6]   Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J].
Bolyen, Evan ;
Rideout, Jai Ram ;
Dillon, Matthew R. ;
Bokulich, NicholasA. ;
Abnet, Christian C. ;
Al-Ghalith, Gabriel A. ;
Alexander, Harriet ;
Alm, Eric J. ;
Arumugam, Manimozhiyan ;
Asnicar, Francesco ;
Bai, Yang ;
Bisanz, Jordan E. ;
Bittinger, Kyle ;
Brejnrod, Asker ;
Brislawn, Colin J. ;
Brown, C. Titus ;
Callahan, Benjamin J. ;
Caraballo-Rodriguez, Andres Mauricio ;
Chase, John ;
Cope, Emily K. ;
Da Silva, Ricardo ;
Diener, Christian ;
Dorrestein, Pieter C. ;
Douglas, Gavin M. ;
Durall, Daniel M. ;
Duvallet, Claire ;
Edwardson, Christian F. ;
Ernst, Madeleine ;
Estaki, Mehrbod ;
Fouquier, Jennifer ;
Gauglitz, Julia M. ;
Gibbons, Sean M. ;
Gibson, Deanna L. ;
Gonzalez, Antonio ;
Gorlick, Kestrel ;
Guo, Jiarong ;
Hillmann, Benjamin ;
Holmes, Susan ;
Holste, Hannes ;
Huttenhower, Curtis ;
Huttley, Gavin A. ;
Janssen, Stefan ;
Jarmusch, Alan K. ;
Jiang, Lingjing ;
Kaehler, Benjamin D. ;
Bin Kang, Kyo ;
Keefe, Christopher R. ;
Keim, Paul ;
Kelley, Scott T. ;
Knights, Dan .
NATURE BIOTECHNOLOGY, 2019, 37 (08) :852-857
[7]   Antimicrobial resistance among Enterobacteriaceae in South America: History, current dissemination status and associated socioeconomic factors [J].
Bonelli, Raquel Regina ;
Moreira, Beatriz Meurer ;
Picao, Renata Cristina .
DRUG RESISTANCE UPDATES, 2014, 17 (1-2) :24-36
[8]   Occurrence of emerging sulfonamide resistance (sul1 and sul2) associated with mobile integrons-integrase (intI1 and intI2) in riverine systems [J].
Chaturvedi, Preeti ;
Singh, Anuradha ;
Chowdhary, Pankaj ;
Pandey, Ashok ;
Gupta, Pratima .
SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 751
[9]   GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database [J].
Chaumeil, Pierre-Alain ;
Mussig, Aaron J. ;
Hugenholtz, Philip ;
Parks, Donovan H. .
BIOINFORMATICS, 2020, 36 (06) :1925-1927
[10]   Prevalence, source and risk of antibiotic resistance genes in the sediments of Lake Tai (China) deciphered by metagenomic assembly: A comparison with other global lakes [J].
Chen, Haiyang ;
Jing, Lijun ;
Yao, Zhipeng ;
Meng, Fansheng ;
Teng, Yanguo .
ENVIRONMENT INTERNATIONAL, 2019, 127 :267-275