Classification of 7-dimensional solvable Lie algebras having 5-dimensional nilradicals

被引:4
|
作者
Le, Vu A. [1 ]
Nguyen, Tuan A. [2 ]
Nguyen, Tu T. C. [3 ,4 ]
Nguyen, Tuyen T. M. [3 ,5 ]
Vo, Thieu N. [6 ,7 ]
机构
[1] Vietnam Natl Univ, Univ Econ & Law, Dept Econ Math, Ho Chi Minh City, Vietnam
[2] Ho Chi Minh City Univ Educ, Dept Primary Educ, Ho Chi Minh City, Vietnam
[3] Vietnam Natl Univ, Univ Sci, Fac Math & Comp Sci, Ho Chi Minh City, Vietnam
[4] Can Tho Univ, Coll Nat Sci, Can Tho City, Vietnam
[5] Dong Thap Univ, Fac Math & Comp Sci Teacher Educ, Cao Lanh City, Dong Thap Provi, Vietnam
[6] Ton Duc Thang Univ, Fac Math & Stat, Fract Calculus Optimizat & Algebra Res Grp, Ho Chi Minh City, Vietnam
[7] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
关键词
Lie algebra; nilradical; EXTENSIONS;
D O I
10.1080/00927872.2022.2145300
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By combining basic techniques in Lie Theory and a computer algebra tool which is the so-called triangular decomposition, the class of 7-dimensional real and complex indecomposable solvable Lie algebras having 5-dimensional nilradicals is classified up to isomorphism. In association with Gong (1998), Parry (2007), Hindeleh and Thompson (2008), we achieve a full classification of 7-dimensional real and complex indecomposable solvable Lie algebras.
引用
收藏
页码:1866 / 1885
页数:20
相关论文
共 50 条
  • [1] On classification of 5-dimensional solvable Leibniz algebras
    Khudoyberdiyev, A. Kh.
    Rakhimov, I. S.
    Husain, Sh. K. Said
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 457 : 428 - 454
  • [2] ON HOLOMORPHIC REALIZATIONS OF 5-DIMENSIONAL LIE ALGEBRAS
    Akopyan, R. C.
    Loboda, A., V
    ST PETERSBURG MATHEMATICAL JOURNAL, 2020, 31 (06) : 911 - 937
  • [3] Solvable Lie Algebras with Quasifiliform Nilradicals
    Wang, Yan
    Lin, Jie
    Deng, Shaoqiang
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (11) : 4052 - 4067
  • [4] On the Orbits of Nilpotent 7-dimensional Lie Algebras in 4-dimensional Complex Space
    Loboda, Alexander, V
    Akopyan, Ripsime S.
    Krutskikh, Vladislav V.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2020, 13 (03): : 360 - 372
  • [5] Solvable Leibniz algebras with quasi-filiform Lie algebras of maximum length nilradicals
    Muratova, Kh. A.
    Ladra, M.
    Omirov, B. A.
    Sattarov, A. M.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (08) : 3525 - 3542
  • [6] Quivers and Three Dimensional Solvable Lie Algebras
    Pike, Jeffrey
    JOURNAL OF LIE THEORY, 2017, 27 (03) : 707 - 726
  • [7] Solvable Leibniz algebras with naturally graded non-Lie p-filiform nilradicals
    Adashev, J. Q.
    Ladra, M.
    Omirov, B. A.
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (10) : 4329 - 4347
  • [8] On Orbits of 4-Dimensional Representations of 3-Dimensional Solvable Lie Algebras
    A. V. Loboda
    R. S. Akopyan
    B. M. Darinskii
    Lobachevskii Journal of Mathematics, 2023, 44 : 1383 - 1406
  • [9] On Orbits of 4-Dimensional Representations of 3-Dimensional Solvable Lie Algebras
    Loboda, A. V.
    Akopyan, R. S.
    Darinskii, B. M.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (04) : 1383 - 1406
  • [10] Applying matrix theory to classify real solvable Lie algebras having 2-dimensional derived ideals
    Le, Vu A.
    Nguyen, Tuan A.
    Nguyen, Tu T. C.
    Nguyen, Tuyen T. M.
    Vo, Thieu N.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 588 (588) : 282 - 303