Movement decoding using spatio-spectral features of cortical and subcortical local field potentials

被引:6
作者
Peterson, Victoria [1 ]
Merk, Timon [2 ]
Bush, Alan [1 ]
Nikulin, Vadim [3 ]
Kuehn, Andrea A. [2 ]
Neumann, Wolf -Julian [2 ]
Richardson, R. Mark [1 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Dept Neurosurg, Boston, MA USA
[2] Charite Univ Med Berlin, Dept Neurol, Movement Disorder & Neuromodulat Unit, Berlin, Germany
[3] Max Planck Inst Human Cognit & Brain Sci, Dept Neurol, Leipzig, Germany
基金
美国国家卫生研究院;
关键词
Adaptive deep brain stimulation; Movement decoding; Machine learning; Multichannel recordings; Invasive neural oscillation; Spatial filters; DEEP-BRAIN-STIMULATION; HUMAN SUBTHALAMIC NUCLEUS; PARKINSONS-DISEASE; ELECTROCORTICOGRAPHY; OSCILLATIONS; EXPERIENCE; DISORDERS; FRAMEWORK; DYNAMICS; CORTEX;
D O I
10.1016/j.expneurol.2022.114261
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The first commercially sensing enabled deep brain stimulation (DBS) devices for the treatment of movement disorders have recently become available. In the future, such devices could leverage machine learning based brain signal decoding strategies to individualize and adapt therapy in real-time. As multi-channel recordings become available, spatial information may provide an additional advantage for informing machine learning models. To investigate this concept, we compared decoding performances from single channels vs. spatial filtering techniques using intracerebral multitarget electrophysiology in Parkinson's disease patients undergoing DBS implantation. We investigated the feasibility of spatial filtering in invasive neurophysiology and the putative utility of combined cortical ECoG and subthalamic local field potential signals for decoding grip-force, a well-defined and continuous motor readout. We found that adding spatial information to the model can improve decoding (6% gain in decoding), but the spatial patterns and additional benefit was highly individual. Beyond decoding performance results, spatial filters and patterns can be used to obtain meaningful neurophysiological information about the brain networks involved in target behavior. Our results highlight the importance of individualized approaches for brain signal decoding, for which multielectrode recordings and spatial filtering can improve precision medicine approaches for clinical brain computer interfaces.
引用
收藏
页数:10
相关论文
共 46 条
  • [1] Subthalamic Nucleus Activity Influences Sensory and Motor Cortex during Force Transduction
    Alhourani, Ahmad
    Korzeniewska, Anna
    Wozny, Thomas A.
    Lipski, Witold J.
    Kondylis, Efstathios D.
    Ghuman, Avniel S.
    Crone, Nathan E.
    Crammond, Donald J.
    Turner, Robert S.
    Richardson, R. Mark
    [J]. CEREBRAL CORTEX, 2020, 30 (04) : 2615 - 2626
  • [2] Electromagnetic brain mapping
    Baillet, S
    Mosher, JC
    Leahy, RM
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2001, 18 (06) : 14 - 30
  • [3] Emerging technologies for improved deep brain stimulation
    Cagnan, Hayriye
    Denison, Timothy
    McIntyre, Cameron
    Brown, Peter
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (09) : 1024 - 1033
  • [4] Identifying controllable cortical neural markers with machine learning for adaptive deep brain stimulation in Parkinson's disease
    Castano-Candamil, Sebastian
    Piroth, Tobias
    Reinacher, Peter
    Sajonz, Bastian
    Coenen, Volker A.
    Tangermann, Michael
    [J]. NEUROIMAGE-CLINICAL, 2020, 28
  • [5] SPoC: A novel framework for relating the amplitude of neuronal oscillations to behaviorally relevant parameters
    Daehne, Sven
    Meinecke, Frank C.
    Haufe, Stefan
    Hoehne, Johannes
    Tangermann, Michael
    Mueller, Klaus-Robert
    Nikulin, Vadim V.
    [J]. NEUROIMAGE, 2014, 86 : 111 - 122
  • [6] Joint decorrelation, a versatile tool for multichannel data analysis
    de Cheveigne, Alain
    Parra, Lucas C.
    [J]. NEUROIMAGE, 2014, 98 : 487 - 505
  • [7] Demsar J, 2006, J MACH LEARN RES, V7, P1
  • [8] A randomized trial of deep-brain stimulation for Parkinson's disease
    Deuschl, Guenther
    Schade-Brittinger, Carmen
    Krack, Paul
    Volkmann, Jens
    Schaefer, Helmut
    Boetzel, Kai
    Daniels, Christine
    Deutschlaender, Angela
    Dillmann, Ulrich
    Eisner, Wilhelm
    Gruber, Doreen
    Hamel, Wolfgang
    Herzog, Jan
    Hilker, Ruediger
    Klebe, Stephan
    Kloss, Manja
    Koy, Jan
    Krause, Martin
    Kupsch, Andreas
    Lorenz, Delia
    Lorenzl, Stefan
    Mehdorn, H. Maximilian
    Moringlane, Jean Richard
    Oertel, Wolfgang
    Pinsker, Marcus O.
    Reichmann, Heinz
    Reuss, Alexander
    Schneider, Gerd-Helge
    Schnitzler, Alfons
    Steude, Ulrich
    Sturm, Volker
    Timmermann, Lars
    Tronnier, Volker
    Trottenberg, Thomas
    Wojtecki, Lars
    Wolf, Elisabeth
    Poewe, Werner
    Voges, Juergen
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2006, 355 (09) : 896 - 908
  • [9] Deuschl G, 2013, NEW ENGL J MED, V368, P2038, DOI [10.1056/NEJMoa1205158, 10.1056/NEJMc1303485]
  • [10] Dugas C, 2001, ADV NEUR IN, V13, P472