Structural and Chemical Evolutions of Li/Electrolyte Interfaces in Li-Metal Batteries: Tracing Compositional Changes of Electrolytes under Practical Conditions

被引:26
作者
Jo, Youngseong [1 ]
Jin, Dahee [1 ]
Lim, Minhong [1 ]
Lee, Hyuntae
An, Hyeongguk [1 ]
Seo, Jiyeon [1 ]
Kim, Gunyoung [1 ]
Ren, Xiaodi [2 ]
Lee, Yong Min [1 ,3 ]
Lee, Hongkyung [1 ,3 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol DGIST, Dept Energy Sci & Engn, Daegu 42988, South Korea
[2] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei 230026, Peoples R China
[3] Daegu Gyeongbuk Inst Sci & Technol DGIST, Energy Sci & Engn Res Ctr, Daegu 42988, South Korea
基金
新加坡国家研究基金会;
关键词
electrolyte composition; lean electrolyte; Li; electrolyte interfaces; Li-metal batteries; reacted Li layer; XPS analysis; LITHIUM-METAL; RECHARGEABLE BATTERIES; ANODES; DENDRITES; GROWTH; LIMITS; CELLS;
D O I
10.1002/advs.202204812
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite the promises in high-energy-density batteries, Li-metal anodes (LMAs) have suffered from extensive electrolyte decomposition and unlimited volume expansion owing to thick, porous layer buildup during cycling. It mainly originates from a ceaseless reiteration of the formation and collapse of solid-electrolyte interphase (SEI). This study reveals the structural and chemical evolutions of the reacted Li layer after different cycles and investigates its detrimental effects on the cycling stability under practical conditions. Instead of the immediately deactivated top surface of the reacted Li layer, the chemical nature underneath the reacted Li layer can be an important indicator of the electrolyte compositional changes. It is found that cycling of LMAs with a lean electrolyte (approximate to 3 g Ah(-1)) causes fast depletion of salt anions, leading to the dynamic evolution of the reacted Li layer structure and composition. Increasing the salt-solvent complex while reducing the non-solvating diluent retards the rate of depletion in a localized high-concentration electrolyte, thereby demonstrating prolonged cycling of Li||NMC622 cells without compromising the Li Coulombic efficiencies and high-voltage stability.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Reconstruction of Solid Electrolyte Interphase with SrI2 Reactivates Dead Li for Durable Anode-Free Li-Metal Batteries [J].
Dong, Liwei ;
Zhong, Shijie ;
Yuan, Botao ;
Li, Yaqiang ;
Liu, Jipeng ;
Ji, Yuanpeng ;
Chen, Dongjiang ;
Liu, Yuanpeng ;
Yang, Chunhui ;
Han, Jiecai ;
He, Weidong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (23)
[32]   Wide-temperature range and high safety electrolytes for high-voltage Li-metal batteries [J].
Pan, Anran ;
Wang, Zhicheng ;
Zhang, Fengrui ;
Wang, Lei ;
Xu, Jingjing ;
Zheng, Jieyun ;
Hu, Jianchen ;
Zhao, Chenglong ;
Wu, Xiaodong .
NANO RESEARCH, 2023, 16 (06) :8260-8268
[33]   NASICON solid electrolyte coated by indium film for all-solid-state Li-metal batteries [J].
Yi-Jie Liu ;
Ru-Yi Fang ;
David Mitlin .
Tungsten, 2022, 4 :316-322
[34]   Bayesian optimisation with transfer learning for NASICON-type solid electrolytes for all-solid-state Li-metal batteries [J].
Fukuda, Hiroko ;
Kusakawa, Shunya ;
Nakano, Koki ;
Tanibata, Naoto ;
Takeda, Hayami ;
Nakayama, Masanobu ;
Karasuyama, Masayuki ;
Takeuchi, Ichiro ;
Natori, Takaaki ;
Ono, Yasuharu .
RSC ADVANCES, 2022, 12 (47) :30696-30703
[35]   Enhanced corrosion stability and cycling performance of dual-salts polymer electrolytes for Li-metal polymer batteries [J].
Bae, Junho ;
Kim, Myeongjun ;
Oh, Sumin ;
Song, Munsoo ;
Liu, Cong-Xue ;
Chung, Seungjun ;
Lim, Jongwoo .
ENERGY STORAGE MATERIALS, 2025, 76
[36]   Elucidating the role of lithiophobic Ni in porous CuNi for improving Li plating/stripping behaviors and solid electrolyte interphase formation for Li-metal batteries [J].
Fei, Xiangyu ;
Yu, Bin ;
Cheng, Guanhua ;
Yu, Xiangrui ;
Ma, Wensheng ;
Wang, Yan ;
Zhang, Zhonghua .
ENERGY STORAGE MATERIALS, 2024, 72
[37]   Modulating Ionic Transport and Interface Chemistry via Surface-Modified Silica Carrier in Nano Colloid Electrolyte for Stable Cycling of Li-Metal Batteries [J].
Lim, Minhong ;
An, Hyeongguk ;
Seo, Jiyeon ;
Lee, Mingyu ;
Lee, Hyuntae ;
Kwon, Hyeokjin ;
Kim, Hee-Tak ;
Esken, Daniel ;
Takata, Ryo ;
Song, Hyun A. ;
Lee, Hongkyung .
SMALL, 2023, 19 (43)
[38]   Diluent decomposition-assisted formation of LiF-rich solid-electrolyte interfaces enables high-energy Li-metal batteries [J].
Zhang, Junbo ;
Zhang, Haikuo ;
Li, Ruhong ;
Lv, Ling ;
Lu, Di ;
Zhang, Shuoqing ;
Xiao, Xuezhang ;
Geng, Shujiang ;
Wang, Fuhui ;
Deng, Tao ;
Chen, Lixin ;
Fan, Xiulin .
JOURNAL OF ENERGY CHEMISTRY, 2023, 78 :71-79
[39]   Activating ultra-low temperature Li-metal batteries by tetrahydrofuran-based localized saturated electrolyte [J].
Lin, Yuansheng ;
Yang, Zhanlin ;
Zhang, Xiangxin ;
Liu, Yongchuan ;
Hu, Guolin ;
Chen, Sujing ;
Zhang, Yining .
ENERGY STORAGE MATERIALS, 2023, 58 :184-194
[40]   A composite solid electrolyte with a framework of vertically aligned perovskite for all-solid-state Li-metal batteries [J].
Liu, Ke ;
Wu, Maochun ;
Wei, Lei ;
Lin, Yanke ;
Zhao, Tianshou .
JOURNAL OF MEMBRANE SCIENCE, 2020, 610