QUANTUM VARIANCE FOR DIHEDRAL MAASS FORMS

被引:2
作者
Huang, Bingrong [1 ,2 ]
Lester, Stephen [3 ,4 ]
机构
[1] Shandong Univ, Data Sci Inst, Jinan 250100, Shandong, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[3] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[4] Kings Coll London, Dept Math, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会;
关键词
SELBERG L-FUNCTIONS; MATRIX-ELEMENTS; LOWER BOUNDS; WEIGHT; MOMENTS; ERGODICITY; COEFFICIENTS; PRODUCTS; UNIFORM; VALUES;
D O I
10.1090/tran/8780
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish an asymptotic formula for the weighted quantum variance of dihedral Maass forms on Gamma 0(D)\H in the large eigenvalue limit, for certain fixed D. As predicted in the physics literature, the resulting quadratic form is related to the classical variance of the geodesic flow on Gamma 0(D)\H, but also includes factors that are sensitive to underlying arithmetic of the number root field Q( D).
引用
收藏
页码:643 / 695
页数:53
相关论文
共 69 条