Direct Laser Deposition of Austenitic and Martensitic Steel Gradient Layers

被引:7
作者
Mendagaliev, R., V [1 ,2 ]
Evdokimov, D. D. [1 ]
Firsov, A. M. [1 ]
Vildanov, A. M. [1 ]
Evstifeev, A. D. [3 ]
Maksimochkin, V., I [4 ]
Grachev, R. A. [4 ]
Dubinin, O. N. [5 ]
Evlashin, S. A. [5 ]
Klimova-Korsmik, O. G. [1 ,2 ]
机构
[1] St Petersburg State Marine Tech Univ, Inst Laser & Welding Technol, St Petersburg 190121, Russia
[2] Peter Great St Petersburg Polytech Univ, Inst Met Mech Engn & Transport, St Petersburg 195251, Russia
[3] St Petersburg State Univ, Univ Skay Nab 7-9, St Petersburg 199034, Russia
[4] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
[5] Skolkovo Inst Sci & Technol, Ctr Mat Technol, Moscow 121205, Russia
关键词
Additive manufacturing (AM); Functional gradient materials; Direct laser deposition (DLD); Microstructure; Mechanical characteristics; Magnetic properties; FUNCTIONALLY GRADED MATERIALS; FABRICATION; BEHAVIOR;
D O I
10.1007/s12540-022-01306-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Gradient materials are of great practical interest for machinery and aviation. Various parts made of these materials can be used at crucially different temperatures, mechanical and chemical conditions. However, obtaining bimetallic materials is sophisticated by various physical and chemical factors. Additive manufacturing allows the creation of complex geometry and produces the parts of different chemical composition. In this article, we demonstrate the fabrication strategy for novel types of "steel-steel" metamaterials of various microhardness and magnetic properties. Direct Energy Deposition of martensite and austenite steels were combined in "metamaterial" components with discrete and continuous layers. An increase in the composition of martensite provides an increase in saturation, which is important for the creation of new generation electric motors. A promising area of use for such parts with gradient transition are reluctance rotors of synchronous motors, in motor assemblies where different properties are required depending on the load and environment.
引用
收藏
页码:1555 / 1562
页数:8
相关论文
共 50 条
[41]   The martensitic strengthening of 12CrNi2 low-alloy steel using a novel scanning strategy during direct laser deposition [J].
Zhao, Xuan ;
Lv, Yaohui ;
Dong, Shiyun ;
Yan, Shixing ;
Liu, Xiaoting ;
Liu, Yuxin ;
He, Peng ;
Lin, Tiesong ;
Xu, Binshi ;
Han, Hongsheng .
OPTICS AND LASER TECHNOLOGY, 2020, 132
[42]   EFFECT OF PLASMA NITRIDING OF AUSTENITIC STAINLESS STEEL PRODUCED BY DIRECT METAL LASER SINTERING [J].
Kovacs, Dorina ;
Kemeny, David Miklos .
ACTA METALLURGICA SLOVACA, 2021, 27 (04) :190-194
[43]   Investigation of variable-temperature wear characteristics of austenitic stainless steel coatings fabricated via laser energy deposition [J].
Deng, Rui ;
Wei, Runze ;
Zhang, Yicha ;
Zhao, Chunjiang ;
Liang, Jianguo ;
Bai, Qiaofeng ;
Li, Huan ;
Ouyang, Changyao ;
He, Qilong ;
Liu, Shenglong ;
Kang, Xuan ;
Wu, Xiaoyu .
WEAR, 2025, 572
[44]   Microstructural control during direct laser deposition of a β-titanium alloy [J].
Qiu, Chunlei ;
Ravi, G. A. ;
Attallah, Moataz M. .
MATERIALS & DESIGN, 2015, 81 :21-30
[45]   A new laser remelting strategy for direct energy deposition of 316L stainless steel [J].
Nie, Hailin ;
Liu, Hang ;
Wang, Chao ;
Wu, Yuru ;
Zhu, Shimin ;
Luo, Jun .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2024, 238 (14) :2139-2151
[46]   High-Strain Deformation and Spallation Strength of 09CrNi2MoCu Steel Obtained by Direct Laser Deposition [J].
Klimova-Korsmik, Olga ;
Turichin, Gleb ;
Mendagaliyev, Ruslan ;
Razorenov, Sergey ;
Garkushin, Gennady ;
Savinykh, Andrey ;
Korsmik, Rudolf .
METALS, 2021, 11 (08)
[47]   A high strength low alloy steel fabricated by direct laser deposition [J].
Wang, Qiang ;
Zhang, Song ;
Zhang, Chunhua ;
Wang, Jianqiang ;
Shahzad, M. Babar ;
Chen, Haitao ;
Chen, Jiang .
VACUUM, 2019, 161 :225-231
[48]   Adjustable magnetic and wear properties of gradient Al-stainless steel materials fabricated by direct energy deposition [J].
Dubinin, O. N. ;
Chernodubov, D. A. ;
Semenyuk, A. S. ;
Shaysultanov, D. G. ;
Zherebtsov, S. V. ;
Evlashin, S. A. ;
Stepanov, N. D. .
PROGRESS IN ADDITIVE MANUFACTURING, 2025, 10 (04) :2983-2989
[49]   Effect of martensitic transformation on nano/ultrafine-grained structure in 304 austenitic stainless steel [J].
Gong, Na ;
Wu, Hui-bin ;
Niu, Gang ;
Cao, Jia-ming ;
Zhang, Da ;
Tana .
JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2017, 24 (12) :1231-1237
[50]   Induced Martensitic Transformation Effect on Residual Stress, Fatigue and Magnetic Permeability of Austenitic Stainless Steel [J].
Giordani, Tiago ;
Diehl, Carla Adriana Theis Soares ;
Diehl, Igor Luis ;
Clarke, Thomas Gabriel Rosauro .
MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2024, 27