About r-primitive and k-normal elements in finite fields

被引:5
作者
Aguirre, Josimar J. R. [1 ]
Carvalho, Cicero [1 ]
Neumann, Victor G. L. [1 ]
机构
[1] Univ Fed Uberlandia Uberlandia, Uberlandia, MG, Brazil
关键词
r-Primitive element; k-Normal element; Normal basis; Finite fields; EXISTENCE;
D O I
10.1007/s10623-022-01101-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In 2013, Huczynska, Mullen, Panario and Thomson introduced the concept of k-normal elements: an element alpha is an element of F-qn is k-normal over F-q if the greatest common divisor of the polynomials g(alpha)(x) = alpha x(n-1)+alpha(q) x(n-2)+ ... +alpha(qn-2) x+alpha(qn-1) and x(n)-1 in F-qn[x] has degree k, generalizing the concept of normal elements (normal in the usual sense is 0-normal). In this paperwe discuss the existence of r-primitive k-normal elements in F-qn over F-q, where an element alpha is an element of F-qn* is r-primitive if its multiplicative order is q(n)-1/r. We provide many general results about the existence of this class of elements and we work a numerical example over finite fields of characteristic 11.
引用
收藏
页码:115 / 126
页数:12
相关论文
共 12 条
  • [1] Existence of primitive 2-normal elements in finite fields
    Aguirre, Josimar J. R.
    Neumann, Victor G. L.
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2021, 73
  • [2] On the Existence of Pairs of Primitive and Normal Elements Over Finite Fields
    Carvalho, Cicero
    Guardieiro, Joao Paulo
    Neumann, Victor G. L.
    Tizziotti, Guilherme
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (03): : 677 - 699
  • [3] The primitive normal basis theorem without a computer
    Cohen, SD
    Huczynska, S
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 : 41 - 56
  • [4] A CLASS OF INCOMPLETE CHARACTER SUMS
    Fu, Lei
    Wan, Daqing
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2014, 65 (04) : 1195 - 1211
  • [5] Primitive element pairs with one prescribed trace over a finite field
    Gupta, Anju
    Sharma, R. K.
    Cohen, Stephen D.
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2018, 54 : 1 - 14
  • [6] Hachenberger R., 2020, TOPICS GALOIS FIELDS
  • [7] Existence and properties of k-normal elements over finite fields
    Huczynska, Sophie
    Mullen, Gary L.
    Panario, Daniel
    Thomson, David
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2013, 24 : 170 - 183
  • [8] LENSTRA HW, 1987, MATH COMPUT, V48, P217, DOI 10.1090/S0025-5718-1987-0866111-3
  • [9] Lidl R., 1997, FINITE FIELDS
  • [10] Existence results on k-normal elements over finite fields
    Reis, Lucas
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (03) : 805 - 822