Analyzing the impact of drought on agriculture: evidence from Pakistan using standardized precipitation evapotranspiration index

被引:24
|
作者
Hussain, Anwar [1 ]
Jadoon, Khan Zaib [2 ]
Rahman, Khalil Ur [3 ]
Shang, Songhao [3 ]
Shahid, Muhammad [4 ]
Ejaz, Nuaman [5 ]
Khan, Himayatullah [6 ]
机构
[1] Univ Swat, Dept Econ & Dev Studies, Swat, Khyber Pakhtunk, Pakistan
[2] Islamic Int Univ, Dept Civil Engn, Islamabad 44000, Pakistan
[3] Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China
[4] Univ Engn & Technol, Fac Civil Engn, Lahore 54890, Pakistan
[5] King Abdulaziz Univ, Dept Hydrol & Water Resources Management, POB 80208, Jeddah 21589, Saudi Arabia
[6] Agr Univ, Inst Dev Studies, Peshawar, Pakistan
基金
中国国家自然科学基金;
关键词
Drought; Standardized precipitation evapotranspiration index; Agriculture; Crop yield; Pakistan; CLIMATE-CHANGE; TRENDS; TEMPERATURE; CROP;
D O I
10.1007/s11069-022-05559-6
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The current study evaluates the impact of drought on Pakistan's agriculture sector at national and provincial scales during 2000-2020 using the Standardized Precipitation Evapotranspiration Index (SPEI-3). Severe drought events were observed during 2001, 2003, 2006, 2007, 2008, 2012, 2017, and 2018, which are used to demonstrate the impact of drought on agriculture. Balochistan and Sindh provinces are severely affected by drought due to their arid/hyper-arid climate nature. Drought severity is relatively high in Kharif season (ranging from severe to moderate) compared with drought in Rabi season. The average SPEI-3 during Kharif (Rabi) season across KP, Punjab, Balochistan, and Sindh provinces are - 0.48 to - 1.02 (0.47 to - 0.83), - 1.33 to - 1.68 (- 0.93 to - 1.36), - 1.21 to - 1.54 (- 0.76 to - 1.30), and - 1.73 to - 2.07 (1.54 to - 1.96), respectively. The results showed that Punjab, Balochistan, and Sindh provinces are most vulnerable to drought. As the drought index becomes more positive, the maize yield increases at both national and provincial levels. Drought has mixed effects on the rice yield. Similarly, the decline in drought severity leads to an increase in sugarcane, tobacco and wheat yields. The decrease in drought severity has a positive impact on the irrigated area under canals, wells and tubewells at both national and provincial levels. Similarly, an increase in the drought index also leads to an increase in the total cultivated and cropped area.
引用
收藏
页码:389 / 408
页数:20
相关论文
共 50 条
  • [1] Analyzing the impact of drought on agriculture: evidence from Pakistan using standardized precipitation evapotranspiration index
    Anwar Hussain
    Khan Zaib Jadoon
    Khalil Ur Rahman
    Songhao Shang
    Muhammad Shahid
    Nuaman Ejaz
    Himayatullah Khan
    Natural Hazards, 2023, 115 : 389 - 408
  • [2] A drought index for Rainfed agriculture: The Standardized Precipitation Crop Evapotranspiration Index (SPCEI)
    Pei, Wei
    Fu, Qiang
    Liu, Dong
    Li, Tianxiao
    HYDROLOGICAL PROCESSES, 2019, 33 (05) : 803 - 815
  • [3] Spatio-Temporal Variability of Drought in Pakistan Using Standardized Precipitation Evapotranspiration Index
    Jamro, Shoaib
    Dars, Ghulam Hussain
    Ansari, Kamran
    Krakauer, Nir Y.
    APPLIED SCIENCES-BASEL, 2019, 9 (21):
  • [4] Drought monitoring based on Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index in the arid zone of Balochistan province, Pakistan
    Qaisrani Z.N.
    Nuthammachot N.
    Techato K.
    Asadullah
    Arabian Journal of Geosciences, 2021, 14 (1)
  • [5] A Drought Index: The Standardized Precipitation Evapotranspiration Irrigation Index
    He, Liupeng
    Tong, Liang
    Zhou, Zhaoqiang
    Gao, Tianao
    Ding, Yanan
    Ding, Yibo
    Zhao, Yiyang
    Fan, Wei
    WATER, 2022, 14 (13)
  • [6] A drought index: The standardized precipitation evapotranspiration runoff index
    Wang, Long
    Yu, Hang
    Yang, Maoling
    Yang, Rui
    Gao, Rui
    Wang, Ying
    JOURNAL OF HYDROLOGY, 2019, 571 : 651 - 668
  • [7] Spatiotemporal drought analysis in Bangladesh using the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI)
    Mohammad Kamruzzaman
    Mansour Almazroui
    M. A. Salam
    Md Anarul Haque Mondol
    Md. Mizanur Rahman
    Limon Deb
    Palash Kumar Kundu
    Md. Asad Uz Zaman
    Abu Reza Md. Towfiqul Islam
    Scientific Reports, 12
  • [8] Spatiotemporal drought analysis in Bangladesh using the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI)
    Kamruzzaman, Mohammad
    Almazroui, Mansour
    Salam, M. A.
    Mondol, Md Anarul Haque
    Rahman, Md Mizanur
    Deb, Limon
    Kundu, Palash Kumar
    Zaman, Md Asad Uz
    Islam, Abu Reza Md Towfiqul
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [9] Drought Analysis Of Erzurum Station By Using Standardized Precipitation Evapotranspiration Index And Aggregated Drought Index
    Topcu, Emre
    Karacor, Fatih
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2021, 24 (02): : 565 - 574
  • [10] Drought monitoring in Croatia using the standardized precipitation-evapotranspiration index
    Loncar-Petrinjak, Ivan
    Pasaric, Zoran
    Kalin, Ksenija Cindric
    GEOFIZIKA, 2024, 41 (01) : 1 - 23