Global Existence of Smooth Solutions for the One-Dimensional Full Euler System for a Dusty Gas

被引:0
作者
Lai, Geng [1 ]
Shi, Yingchun [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressible Euler system; Dusty gas; Classical solution; The method of characteristic decomposition; EQUATIONS; SINGULARITIES; WAVES; VAN; PROPAGATION; EXPANSION; WEDGE;
D O I
10.1007/s42967-022-00197-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of global-in-time classical solutions for the one-dimensional nonisentropic compressible Euler system for a dusty gas with large initial data. Using the characteristic decomposition method proposed by Li et al. (Commun Math Phys 267: 1-12, 2006), we derive a group of characteristic decompositions for the system. Using these characteristic decompositions, we find a sufficient condition on the initial data to ensure the existence of global-in-time classical solutions.
引用
收藏
页码:1235 / 1246
页数:12
相关论文
共 50 条
[31]   GLOBAL WELL-POSEDNESS OF SHOCK FRONT SOLUTIONS TO ONE-DIMENSIONAL PISTON PROBLEM FOR COMBUSTION EULER FLOWS [J].
Hu, Kai ;
Kuang, Jie .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (03) :2042-2110
[32]   On the Global Existence for the Compressible Euler-Riesz System [J].
Danchin, R. ;
Ducomet, B. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (02)
[33]   Global Existence of Smooth Solutions to Three Dimensional Hall-MHD System with Mixed Partial Viscosity [J].
Wang Yuzhu .
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2021, 34 (01) :1-13
[34]   The Existence of Global Solutions for the Full Navier-Stokes-Korteweg System of Van Der Waals Gas [J].
Hong, Hakho .
ACTA MATHEMATICA SCIENTIA, 2023, 43 (02) :469-491
[35]   Irrotational approximation to the one-dimensional bipolar Euler-Poisson system [J].
Geng, Jinbo ;
Zhang, Yongqian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (01) :13-23
[37]   Global solutions to one-dimensional shallow water magnetohydrodynamic equations [J].
Gu, Feng ;
Lu, Yun-guang ;
Zhang, Qiong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (02) :714-723
[38]   Global Existence for the N Body Euler-Poisson System [J].
Parmeshwar, Shrish .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2022, 244 (02) :157-208
[39]   Global solutions for the one-dimensional Boussinesq-Peregrine system under small bottom variation [J].
Molinet, Luc ;
Talhouk, Raafat .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 423 :550-596
[40]   On the Global Existence for the Compressible Euler–Riesz System [J].
R. Danchin ;
B. Ducomet .
Journal of Mathematical Fluid Mechanics, 2022, 24